Answer:
Given Data:
The margin of error $(e)=0.04$
The confidence interval level $=84%$
Here the sample proportion is not given so we can use $(p)=0.5$
Solution:
The level of significance $(\alpha)=1-0.84=0.16$
The critical value $(z_c)=Z_{\frac{\alpha}{2}} = Z_{\frac{0.16}{2}} = 1.41 $
Here we need to use a margin of error formula to find out the sample size:
$$\therefore e = z_c \cdot \sqrt{\frac{p(1 – p)}{n}}$$ $$\therefore 0.04 = 1.41 \cdot \sqrt{\frac{0.5(1 – 0.5)}{n}} $$ $$\therefore n = 311$$