Answer:
Given:
The population mean $(𝜇) = 125$
The population standard deviation $(\sigma)=15$
Solution:
The probability that a random male has a blood pressure greater than 137 mm:
$\therefore P(x > 137) = P\left(\frac{x – \mu}{\sigma} > \frac{137 – 125}{15}\right) = P(z > 0.8) = 0.2119$