Answer:
Given:
The Hypothesized Mean $ (\mu) = 300 $
The Sample Mean $ (\bar{x}) = 308 $
The Sample Variance $ (s^2) = 81 $
The Sample Size $ (n) = 13 $
$\therefore$ The Sample Standard Deviation $ (s) = \sqrt{81} = 9 $
The Significance Level $ (\alpha) = 0.02 $
Solution:
The null and alternative hypothesis:
$ H_0: \mu = 300 $
$ H_1: \mu > 300 $
The test statistic $ (t): $
$t = \frac{\bar{x} – \mu}{\frac{s}{\sqrt{n}}} $
$ = \frac{308 – 300}{\frac{9}{\sqrt{13}}} $
$ = 3.205 $
The degree of freedom $ (df): $
$ df = n – 1 $
$ = 13 – 1 $
$ = 12 $
The p-value:
$ \text{p-value} = \text{P}(t_{12} > 3.205) $
$ = 0.0038 $
The conclusion:
The p-value is less than the significance level. Therefore, we reject the null hypothesis. There is sufficient evidence to support the claim that the bags are overfilled.
Final Answer:
The null and alternative hypothesis:
$ H_0: \mu = 300 $
$ H_1: \mu > 300 $
The test statistic $ (t) = 3.205 $
The p-value $ = 0.0038 $
The conclusion:
The p-value is less than the significance level. Therefore, we reject the null hypothesis. There is sufficient evidence to support the claim that the bags are overfilled.