Construct the confidence interval for the population mean μ. c=0.98​, x=7.1​, σ=0.5​, and n=50 A 98​% confidence interval for μ is ___ , ___. ​(Round to two decimal places as​ needed.)


Answer:
Given:
Sample mean $(x\bar) = 7.1 $

Population standard deviation $ (σ)=0.5 $

Sample size $ (n)=50 $

Confidence interval level $=98% $

Solution:
The significance level $(\alpha): $
$ \therefore (\alpha) = 1-0.98 = 0.02 $

The critical value $(z_c): $
The critical value at 0.02 significance level = 2.33

The confidence interval:
$CI = \bar{x} \pm z_c \cdot \frac{\sigma}{\sqrt{n}} = 7.1 \pm 2.33 \cdot \frac{0.5}{\sqrt{50}} = (6.9369, 7.2631) \approx (6.94, 7.26)$

Final answer:
The 98% confidence interval $= (6.94,7.26)$

adbhutah
adbhutah

adbhutah.com

Articles: 1279