Exponents and Logarithms

Exponents and logarithms are essential mathematical concepts that help simplify complex calculations involving powers and roots. They are widely used in algebra, calculus, and many areas of science and engineering. In this blog, we will explore the fundamentals of exponents and logarithms, along with 100 detailed examples that demonstrate their applications. Each example will be explained step by step, ensuring clarity and understanding.


1. Exponents

1.1 What Are Exponents?

An exponent refers to the number of times a number, called the base, is multiplied by itself. For example, in the expression 23, 2 is the base, and 3 is the exponent. This means 2 is multiplied by itself three times:

23=2×2×2=8

Exponents are a shorthand way to express repeated multiplication.

1.2 Laws of Exponents

Here are the key laws of exponents:

  1. Product Rule: am×an=am+n
    • Example: 23×24=23+4=27=128
  2. Quotient Rule: aman=amn
    • Example: 5653=563=53=125
  3. Power of a Power Rule: (am)n=am×n
    • Example: (24)2=24×2=28=256
  4. Power of a Product Rule: (ab)n=an×bn
    • Example: (3×4)2=32×42=9×16=144
  5. Power of a Quotient Rule: (ab)n=anbn
    • Example: (23)2=2232=49
  6. Zero Exponent Rule: a0=1, provided a0
    • Example: 50=1
  7. Negative Exponent Rule: an=1an
    • Example: 42=142=116

2. Logarithms

2.1 What Are Logarithms?

A logarithm is the inverse operation of exponentiation. It tells us the power to which a base must be raised to get a specific number. If ax=b, then logab=x.

For example, if 23=8, then log28=3.

2.2 Laws of Logarithms

Here are the fundamental laws of logarithms:

  1. Product Rule: logb(xy)=logbx+logby
    • Example: log2(4×8)=log24+log28=2+3=5
  2. Quotient Rule: logb(xy)=logbxlogby
    • Example: log3(93)=log39log33=21=1
  3. Power Rule: logb(xn)=nlogbx
    • Example: log2(82)=2log28=2×3=6
  4. Change of Base Rule: logbx=logkxlogkb
    • Example: log525=log1025log105=1.39790.6989=2
  5. Logarithm of 1: logb1=0
    • Example: log41=0
  6. Logarithm of Base: logbb=1
    • Example: log77=1

3. 100 Examples of Exponents and Logarithms

Let’s explore 100 detailed examples with step-by-step solutions to solidify your understanding of exponents and logarithms.


Exponents Examples


Example 1: Simplify 24×23.

Solution:
24×23=24+3
=27
=128


Example 2: Simplify 5652.

Solution:
5652=562
=54
=625


Example 3: Simplify (32)3.

Solution:
(32)3=32×3
=36
=729


Example 4: Simplify (5×6)2.

Solution:
(5×6)2=52×62
=25×36
=900


Example 5: Simplify (93)2.

Solution:
(93)2=9232
=819
=9


Example 6: Simplify 40.

Solution:
40=1


Example 7: Simplify 62.

Solution:
62=162
=136


Example 8: Simplify (23)4.

Solution:
(23)4=2434
=1681


Example 9: Simplify (73)2.

Solution:
(73)2=73×2
=76
=117649


Example 10: Simplify 3533.

Solution:
3533=353
=32
=9


Logarithms Examples


Example 11: Solve log216.

Solution:
log216=x2x=16
24=16
x=4


Example 12: Solve log5125.

Solution:
log5125=x5x=125
53=125
x=3


Example 13: Solve log327.

Solution:
log327=x3x=27
33=27
x=3


Example 14: Solve log464.

Solution:
log464=x4x=64
43=64
x=3


Example 15: Solve log749.

Solution:
log749=x7x=49
72=49
x=2


Example 16: Simplify log3(9×27).

Solution:
log3(9×27)=log39+log327
=2+3
=5


Example 17: Simplify log5(255).

Solution:
log5(255)=log525log55
=21
=1


Example 18: Simplify log2(82).

Solution:
log2(82)=2log28
=2×3
=6


Example 19: Solve log41.

Solution:
log41=0


Example 20: Solve log55.

Solution:
log55=1


Exponents Examples


Example 21: Simplify 6763.

Solution:
6763=673
=64
=1296


Example 22: Simplify (42)3.

Solution:
(42)3=42×3
=46
=4096


Example 23: Simplify 25×23.

Solution:
25×23=25+3
=28
=256


Example 24: Simplify 104102.

Solution:
104102=1042
=102
=100


Example 25: Simplify (32×33).

Solution:
32×33=32+3
=35
=243


Example 26: Simplify 72×75.

Solution:
72×75=7(2+5)
=73
=343


Example 27: Simplify (53)2×54.

Solution:
(53)2=56
56×54=564
=52
=25


Example 28: Simplify 2622×23.

Solution:
2622=262=24
24×23=243=21
=2


Example 29: Simplify 34÷92.

Solution:
34÷(32)2=3434
=1


Example 30: Simplify (23×24)÷25.

Solution:
23×24=23+4=27
2725=275=22
=4


Example 31: Simplify 8343.

Solution:
8343=(23)3(22)3
=2926
=296
=23
=8


Example 32: Simplify (74)12.

Solution:
(74)12=74×12
=72
=49


Example 33: Simplify 5553×52.

Solution:
5553=553=52
52×52=52+2
=54
=625


Example 34: Simplify 9334.

Solution:
9334=(32)334
=3634
=364=32
=9


Example 35: Simplify 43×26.

Solution:
43=(22)3=26
26×26=266
=20
=1

Logarithms Examples


Example 36: Solve log232.

Solution:
log232=x2x=32
25=32
x=5


Example 37: Solve log525.

Solution:
log525=x5x=25
52=25
x=2


Example 38: Simplify log3(27×9).

Solution:
log3(27×9)=log327+log39
=3+2
=5


Example 39: Solve log7(497).

Solution:
log7(497)=log749log77
=21
=1


Example 40: Solve log264.

Solution:
log264=x2x=64
26=64
x=6


Example 41: Simplify log3(92).

Solution:
log3(92)=2log39
=2×2
=4


Example 42: Solve log5(12525).

Solution:
log5(12525)=log5125log525
=32
=1


Example 43: Solve log21.

Solution:
log21=0


Example 44: Solve log416.

Solution:
log416=x4x=16
42=16
x=2


Example 45: Solve log981.

Solution:
log981=x9x=81
92=81
x=2


Example 46: Simplify log2(4×8).

Solution:
log2(4×8)=log24+log28
=2+3
=5


Example 47: Simplify log6(366).

Solution:
log6(366)=log636log66
=21
=1


Example 48: Solve log749.

Solution:
log749=x7x=49
72=49
x=2


Example 49: Solve log381.

Solution:
log381=x3x=81
34=81
x=4


Example 50: Solve log101000.

Solution:
log101000=x10x=1000
103=1000
x=3

Exponents Examples


Example 51: Simplify 45÷26.

Solution:
4526=(22)526
=21026
=2106
=24
=16


Example 52: Simplify (35)15.

Solution:
(35)15=35×15
=31
=3


Example 53: Simplify 83÷42.

Solution:
8342=(23)3(22)2
=2924
=294
=25
=32


Example 54: Simplify 53×54.

Solution:
53×54=53+4
=51
=5


Example 55: Simplify (34)2.

Solution:
(34)2=3242
=916


Example 56: Simplify (62)×(64).

Solution:
62×64=62+(4)
=62
=162
=136


Example 57: Simplify 27÷25.

Solution:
2725=275
=22
=4


Example 58: Simplify (43)2.

Solution:
(43)2=43×2
=46
=4096


Example 59: Simplify 9334.

Solution:
9334=(32)334
=3634
=364
=32
=9


Example 60: Simplify (54)12.

Solution:
(54)12=54×12
=52
=25


Logarithms Examples


Example 61: Solve log28.

Solution:
log28=x2x=8
23=8
x=3


Example 62: Solve log39.

Solution:
log39=x3x=9
32=9
x=2


Example 63: Solve log5125.

Solution:
log5125=x5x=125
53=125
x=3


Example 64: Simplify log2(4×8).

Solution:
log2(4×8)=log24+log28
=2+3
=5


Example 65: Simplify log3(9÷3).

Solution:
log3(9÷3)=log39log33
=21
=1


Example 66: Solve log101000.

Solution:
log101000=x10x=1000
103=1000
x=3


Example 67: Simplify log5(25×5).

Solution:
log5(25×5)=log525+log55
=2+1
=3


Example 68: Solve log216.

Solution:
log216=x2x=16
24=16
x=4


Example 69: Solve log381.

Solution:
log381=x3x=81
34=81
x=4


Example 70: Solve log464.

Solution:
log464=x4x=64
43=64
x=3


Example 71: Simplify log2(8×16).

Solution:
log2(8×16)=log28+log216
=3+4
=7


Example 72: Simplify log3(27÷9).

Solution:
log3(27÷9)=log327log39
=32
=1


Example 73: Solve log749.

Solution:
log749=x7x=49
72=49
x=2


Example 74: Solve log981.

Solution:
log981=x9x=81
92=81
x=2


Example 75: Solve log5625.

Solution:
log5625=x5x=625
54=625
x=4


Example 76: Simplify log3(9×27).

Solution:
log3(9×27)=log39+log327
=2+3
=5


Example 77: Solve log2(16×32).

Solution:
log2(16×32)=log216+log232
=4+5
=9


Example 78: Simplify log4(64÷16).

Solution:
log4(64÷16)=log464log416
=32
=1


Example 79: Solve log864.

Solution:
log864=x8x=64
82=64
x=2


Example 80: Solve log636.

Solution:
log636=x6x=36
62=36
x=2


Example 81: Solve log2128.

Solution:
log2128=x2x=128
27=128
x=7


Example 82: Simplify log3(81×9).

Solution:
log3(81×9)=log381+log39
=4+2
=6


Example 83: Solve log10100.

Solution:
log10100=x10x=100
102=100
x=2


Example 84: Simplify log5(255).

Solution:
log5(255)=log525log55
=21
=1


Example 85: Solve log7343.

Solution:
log7343=x7x=343
73=343
x=3


Example 86: Simplify log6(216×36).

Solution:
log6(216×36)=log6216+log636
=3+2
=5


Example 87: Solve log9729.

Solution:
log9729=x9x=729
93=729
x=3


Example 88: Solve log3(81÷9).

Solution:
log3(81÷9)=log381log39
=42
=2


Example 89: Solve log2256.

Solution:
log2256=x2x=256
28=256
x=8


Example 90: Simplify log4(6416).

Solution:
log4(6416)=log464log416
=32
=1


Example 91: Solve log232.

Solution:
log232=x2x=32
25=32
x=5


Example 92: Solve log4256.

Solution:
log4256=x4x=256
44=256
x=4


Example 93: Simplify log5(25×125).

Solution:
log5(25×125)=log525+log5125
=2+3
=5


Example 94: Solve log8512.

Solution:
log8512=x8x=512
83=512
x=3


Example 95: Simplify log3(81×27).

Solution:
log3(81×27)=log381+log327
=4+3
=7


Example 96: Solve log4(64×16).

Solution:
log4(64×16)=log464+log416
=3+2
=5


Example 97: Solve log9243.

Solution:
log9243=x9x=243
952=243
x=52


Example 98: Simplify log6(216÷36).

Solution:
log6(216÷36)=log6216log636
=32
=1


Example 99: Solve log264.

Solution:
log264=x2x=64
26=64
x=6


Example 100: Simplify log3(81×9).

Solution:
log3(81×9)=log381+log39
=4+2
=6

adbhutah
adbhutah

adbhutah.com

Articles: 1281