If $n=15, x̄ (x-bar)=38, and s=10$, find the margin of error at a 95% confidence level

Answer :

Given :

Sample mean $(x\bar) = 38$

Sample standard deviation $(s) = 10$

Sample size $(n) = 15$

Confidence level $= 95%$

Solution :

The significance level :

$$\alpha = 1 – 0.95 = 0.05$$

The degrees of freedom :

$$\text{df} = n – 1 = 15 – 1 = 14$$

Critical value :

$$t_c = t_{\frac{\alpha}{2}, \text{df}}$$ $$= t_{\frac{0.05}{2}, 14}$$ $$= t_{0.025,14}$$ $$= 2.145$$

The margin of error :

$$\text{The margin of error, ME} = t_c \times \frac{s}{\sqrt{n}}$$ $$= 2.145 \times \frac{10}{\sqrt{15}}$$ $$= 5.5384$$

adbhutah
adbhutah

adbhutah.com

Articles: 1279