Implicit Differentiation

Table of Contents

In calculus, we often deal with equations where the dependent and independent variables are intertwined in a more complex way, such that it’s not possible (or practical) to solve for one variable in terms of the other. These are called implicit equations. Implicit differentiation is the method used to differentiate these equations with respect to a variable, often using the chain rule in the process.

In simple differentiation, we explicitly have a function like y=f(x). However, implicit differentiation allows us to find derivatives of relationships like F(x,y)=0, where y is implicitly defined as a function of x. We take the derivative of both sides of the equation with respect to x, applying the chain rule wherever necessary.


1. The Concept of Implicit Differentiation

To understand implicit differentiation, consider the relationship F(x,y)=0, where y is an implicit function of x. We differentiate each term of the equation with respect to x, remembering that y is a function of x, so we apply the chain rule when differentiating terms involving y.

For instance, if we differentiate y2 with respect to x, we apply the chain rule:
ddx[y2]=2ydydx

Thus, implicit differentiation lets us find dydx even when we can’t explicitly solve for y in terms of x.


2. Steps for Implicit Differentiation

  1. Differentiate both sides of the equation with respect to x.
  2. Remember to apply the chain rule when differentiating terms involving y, since y is implicitly a function of x. This means every time you differentiate a y term, you must multiply by dydx.
  3. Solve for dydx, the derivative of y with respect to x.

3. Example 1: Implicit Differentiation of a Simple Equation

Problem:
Find dydx if x2+y2=25.

Answer:

Step 1: Given Data:
The equation is x2+y2=25.

Step 2: Solution:
Differentiate both sides of the equation with respect to x:
ddx[x2+y2]=ddx[25]

On the left-hand side, differentiate x2 normally:
ddx[x2]=2x

Next, apply the chain rule to y2:
ddx[y2]=2ydydx

Since the derivative of a constant (25) is zero, we have:
2x+2ydydx=0

Now, solve for dydx:
2ydydx=2x
dydx=2x2y
dydx=xy

Step 3: Final Answer:
dydx=xy


4. Example 2: Implicit Differentiation Involving a Product of x and y

Problem:
Find dydx if x2y+y3=7.

Answer:

Step 1: Given Data:
The equation is x2y+y3=7.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2y+y3]=ddx[7]

Apply the product rule to x2y:
ddx[x2y]=x2dydx+2xy

Now differentiate y3 using the chain rule:
ddx[y3]=3y2dydx

On the right-hand side, the derivative of 7 is zero:
x2dydx+2xy+3y2dydx=0

Factor out dydx from the terms involving it:
dydx(x2+3y2)=2xy

Now solve for dydx:
dydx=2xyx2+3y2

Step 3: Final Answer:
dydx=2xyx2+3y2


5. Example 3: Implicit Differentiation with Trigonometric Functions

Problem:
Find dydx if sin(xy)=x+y.

Answer:

Step 1: Given Data:
The equation is sin(xy)=x+y.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[sin(xy)]=ddx[x+y]

On the left-hand side, apply the chain rule to differentiate sin(xy):
ddx[sin(xy)]=cos(xy)ddx[xy]

Now apply the product rule to xy:
ddx[xy]=xdydx+y

So, the derivative of sin(xy) is:
cos(xy)(xdydx+y)

On the right-hand side, differentiate x+y:
ddx[x+y]=1+dydx

Now substitute into the equation:
cos(xy)(xdydx+y)=1+dydx

Distribute cos(xy):
cos(xy)xdydx+cos(xy)y=1+dydx

Now collect all terms involving dydx on one side:
cos(xy)xdydxdydx=1cos(xy)y

Factor out dydx:
dydx(cos(xy)x1)=1cos(xy)y

Now solve for dydx:
dydx=1cos(xy)ycos(xy)x1

Step 3: Final Answer:
dydx=1cos(xy)ycos(xy)x1


6. Implicit Differentiation and Second Derivatives

Implicit differentiation can also be used to find second derivatives. After finding the first derivative dydx, we can differentiate it again to find d2ydx2.

Example 4: Finding the Second Derivative

Problem:
Find d2ydx2 if x2+y2=25.

Answer:

Step 1: Given Data:
The equation is x2+y2=25.

Step 2: Solution:
We already found that the first derivative is:
dydx=xy

Now, differentiate dydx with respect to x to find the second derivative:
ddx(xy)

Apply the quotient rule:
ddx(xy)=(y1(x)dydx)y2

Substitute dydx=xy:
=y+xxyy2
=yx2yy2
=y2x2y3

Step 3: Final Answer:
d2ydx2=y2x2y3


Conclusion

Implicit differentiation is a powerful technique that allows us to find the derivative of a dependent variable even when it is not explicitly solved in terms of the independent variable. It’s especially useful in cases involving products of variables and complex relationships where standard differentiation methods don’t apply directly.

In optimization problems, physics, and engineering, implicit differentiation is frequently used, making it an indispensable tool in calculus. Whether solving for the slope of a tangent line, optimizing a system, or working with implicit functions, mastering implicit differentiation is crucial for tackling complex calculus problems.


Question And Answer Library

Example 1: Implicit Differentiation of a Circle Equation

Problem:
Find dydx if x2+y2=16.

Answer:
Step 1: Given Data:
The equation is x2+y2=16.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2+y2]=ddx[16]

On the left-hand side, differentiate:
ddx[x2]+ddx[y2]=2x+2ydydx

On the right-hand side, the derivative of a constant is zero:
2x+2ydydx=0

Now, solve for dydx:
2ydydx=2x
dydx=2x2y
dydx=xy

Step 3: Final Answer:
dydx=xy


Example 2: Implicit Differentiation of an Ellipse Equation

Problem:
Find dydx if x24+y29=1.

Answer:
Step 1: Given Data:
The equation is x24+y29=1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x24]+ddx[y29]=ddx[1]

Differentiate:
14(2x)+19(2ydydx)=0
x2+2y9dydx=0

Now, solve for dydx:
2y9dydx=x2
dydx=x292y
dydx=9x4y

Step 3: Final Answer:
dydx=9x4y


Example 3: Implicit Differentiation of a Hyperbola Equation

Problem:
Find dydx if x29y216=1.

Answer:
Step 1: Given Data:
The equation is x29y216=1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x29]ddx[y216]=ddx[1]

Differentiate:
19(2x)116(2ydydx)=0
2x9y8dydx=0

Now, solve for dydx:
y8dydx=2x9
dydx=2x98y
dydx=16x9y

Step 3: Final Answer:
dydx=16x9y


Example 4: Implicit Differentiation of a Polynomial

Problem:
Find dydx if x3+y3=9.

Answer:
Step 1: Given Data:
The equation is x3+y3=9.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3+y3]=ddx[9]

Differentiate:
3x2+3y2dydx=0

Now, solve for dydx:
3y2dydx=3x2
dydx=3x23y2
dydx=x2y2

Step 3: Final Answer:
dydx=x2y2


Example 5: Implicit Differentiation of a Cubic Equation

Problem:
Find dydx if x4+y4=16.

Answer:
Step 1: Given Data:
The equation is x4+y4=16.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x4+y4]=ddx[16]

Differentiate:
4x3+4y3dydx=0

Now, solve for dydx:
4y3dydx=4x3
dydx=4x34y3
dydx=x3y3

Step 3: Final Answer:
dydx=x3y3


Example 6: Implicit Differentiation of a Complex Polynomial

Problem:
Find dydx if x2y+xy2=10.

Answer:
Step 1: Given Data:
The equation is x2y+xy2=10.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2y+xy2]=ddx[10]

Differentiate using the product rule:
ddx[x2y]=x2dydx+2xy
ddx[xy2]=y2+2xydydx

Combine these results:
x2dydx+2xy+y2+2xydydx=0

Combine like terms:
(x2+2xy)dydx=2xyy2

Now solve for dydx:
dydx=2xyy2x2+2xy

Step 3: Final Answer:
dydx=2xyy2x2+2xy


Example 7: Implicit Differentiation with Radical Functions

Problem:
Find dydx if y2+x=4.

Answer:
Step 1: Given Data:
The equation is y2+x=4.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2+x]=ddx[4]

Differentiate:
2ydydx+12x=0

Now solve for dydx:
2ydydx=12x
dydx=14yx

Step 3: Final Answer:
dydx=14yx


Example 8: Implicit Differentiation of a Logarithmic Function

Problem:
Find dydx if ln(xy)=x+y.

Answer:
Step 1: Given Data:
The equation is ln(xy)=x+y.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[ln(xy)]=ddx[x+y]

Using the chain rule:
1xy(y+xdydx)=1+dydx

Now multiply both sides by xy:
y+xdydx=xy+xydydx

Rearranging gives:
xdydxxydydx=xyy
(xxy)dydx=xyy

Now solve for dydx:
dydx=xyyx(1y)

Step 3: Final Answer:
dydx=y(x1)x(1y)


Example 9: Implicit Differentiation of Exponential Functions

Problem:
Find dydx if exy=x+y.

Answer:
Step 1: Given Data:
The equation is exy=x+y.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[exy]=ddx[x+y]

Using the chain rule on the left:
exy(y+xdydx)=1+dydx

Rearranging gives:
exyy+exyxdydx=1+dydx

Now factor out dydx:
exyxdydxdydx=1exyy
dydx(exyx1)=1exyy

Now solve for dydx:
dydx=1exyyexyx1

Step 3: Final Answer:
dydx=1exyyexyx1


Example 10: Implicit Differentiation in a Complex Relationship

Problem:
Find dydx if x3+xy+y3=6.

Answer:
Step 1: Given Data:
The equation is x3+xy+y3=6.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3]+ddx[xy]+ddx[y3]=ddx[6]

Differentiate:
3x2+(xdydx+y)+3y2dydx=0

Combine terms:
3x2+xdydx+y+3y2dydx=0

Now, factor out dydx:
(x+3y2)dydx=3x2y

Now solve for dydx:
dydx=3x2yx+3y2

Step 3: Final Answer:
dydx=3x2yx+3y2


Question And Answer Library

Example 11: Implicit Differentiation of a Polynomial Equation

Problem:
Find dydx if x4+y4=32.

Answer:
Step 1: Given Data:
The equation is x4+y4=32.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x4+y4]=ddx[32]

Differentiate:
4x3+4y3dydx=0

Now solve for dydx:
4y3dydx=4x3
dydx=4x34y3
dydx=x3y3

Step 3: Final Answer:
dydx=x3y3


Example 12: Implicit Differentiation of an Exponential Equation

Problem:
Find dydx if ex+y=x2y.

Answer:
Step 1: Given Data:
The equation is ex+y=x2y.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[ex+y]=ddx[x2y]

Using the chain rule on the left:
ex+y(1+dydx)=2xdydx

Now distribute:
ex+y+ex+ydydx=2xdydx

Combine like terms:
ex+ydydx+dydx=2xex+y
dydx(ex+y+1)=2xex+y

Now solve for dydx:
dydx=2xex+yex+y+1

Step 3: Final Answer:
dydx=2xex+yex+y+1


Example 13: Implicit Differentiation of a Logarithmic Function

Problem:
Find dydx if ln(xy)+x2=5.

Answer:
Step 1: Given Data:
The equation is ln(xy)+x2=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[ln(xy)]+ddx[x2]=ddx[5]

Using the product rule for ln(xy):
1xy(y+xdydx)+2x=0

Now simplify:
y+xdydxxy+2x=0

Multiply through by xy:
y+xdydx+2x2y=0

Now solve for dydx:
xdydx=y2x2y
dydx=y(1+2x)x

Step 3: Final Answer:
dydx=y(1+2x)x


Example 14: Implicit Differentiation of a Cubic Equation

Problem:
Find dydx if x3+y3=27.

Answer:
Step 1: Given Data:
The equation is x3+y3=27.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3+y3]=ddx[27]

Differentiate:
3x2+3y2dydx=0

Now solve for dydx:
3y2dydx=3x2
dydx=3x23y2
dydx=x2y2

Step 3: Final Answer:
dydx=x2y2


Example 15: Implicit Differentiation of a Relation Involving xyxyxy

Problem:
Find dydx if xy+y2=x3.

Answer:
Step 1: Given Data:
The equation is xy+y2=x3.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[xy+y2]=ddx[x3]

Using the product rule on xy:
xdydx+y+2ydydx=3x2

Combine like terms:
(x+2y)dydx+y=3x2

Now solve for dydx:
(x+2y)dydx=3x2y
dydx=3x2yx+2y

Step 3: Final Answer:
dydx=3x2yx+2y


Example 16: Implicit Differentiation of a Quadratic Equation

Problem:
Find dydx if x24y2=8.

Answer:
Step 1: Given Data:
The equation is x24y2=8.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x24y2]=ddx[8]

Differentiate:
2x8ydydx=0

Now solve for dydx:
8ydydx=2x
dydx=2x8y
dydx=x4y

Step 3: Final Answer:
dydx=x4y


Example 17: Implicit Differentiation of an Equation Involving Trigonometric Functions

Problem:
Find dydx if sin(xy)=x2+y.

Answer:
Step 1: Given Data:
The equation is sin(xy)=x2+y.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[sin(xy)]=ddx[x2+y]

Using the chain rule:
cos(xy)(y+xdydx)=2x+dydx

Now distribute:
cos(xy)y+cos(xy)xdydx=2x+dydx

Collect all terms involving dydx:
cos(xy)xdydxdydx=2xcos(xy)y
dydx(cos(xy)x1)=2xcos(xy)y

Now solve for dydx:
dydx=2xcos(xy)ycos(xy)x1

Step 3: Final Answer:
dydx=2xcos(xy)ycos(xy)x1


Example 18: Implicit Differentiation of a Complex Relationship

Problem:
Find dydx if x2y+3xy2=10.

Answer:
Step 1: Given Data:
The equation is x2y+3xy2=10.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2y+3xy2]=ddx[10]

Using the product rule on x2y:
2xy+x2dydx+3(y2+2xydydx)=0

Combine terms:
2xy+3y2+(x2+6xy)dydx=0

Now solve for dydx:
(x2+6xy)dydx=(2xy+3y2)
dydx=(2xy+3y2)x2+6xy

Step 3: Final Answer:
dydx=(2xy+3y2)x2+6xy


Example 19: Implicit Differentiation of a Cubic Function

Problem:
Find dydx if x3+y3=3xy.

Answer:
Step 1: Given Data:
The equation is x3+y3=3xy.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3+y3]=ddx[3xy]

Differentiate:
3x2+3y2dydx=3(y+xdydx)

Distributing gives:
3x2+3y2dydx=3y+3xdydx

Now rearrange:
3y2dydx3xdydx=3y3x2
(3y23x)dydx=3y3x2

Now solve for dydx:
dydx=3y3x23y23x
dydx=yx2y2x

Step 3: Final Answer:
dydx=yx2y2x


Example 20: Implicit Differentiation of a Relationship with Square Roots

Problem:
Find dydx if x2+y2=16.

Answer:
Step 1: Given Data:
The equation is x2+y2=16.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2+y2]=ddx[16]

Differentiate:
2x+2ydydx=0

Now solve for dydx:
2ydydx=2x
dydx=xy

Step 3: Final Answer:
dydx=xy


Example 21: Implicit Differentiation of a Higher Degree Polynomial

Problem:
Find dydx if x4+y4=64.

Answer:
Step 1: Given Data:
The equation is x4+y4=64.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x4+y4]=ddx[64]

Differentiate:
4x3+4y3dydx=0

Now solve for dydx:
4y3dydx=4x3
dydx=x3y3

Step 3: Final Answer:
dydx=x3y3


Example 22: Implicit Differentiation of a Complex Equation

Problem:
Find dydx if x2y2+xy=10.

Answer:
Step 1: Given Data:
The equation is x2y2+xy=10.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2y2+xy]=ddx[10]

Differentiate:
2xy2+x22ydydx+y+xdydx=0

Now rearrange:
2xy2+y+(2x2y+x)dydx=0

Now solve for dydx:
(2x2y+x)dydx=(2xy2+y)
dydx=(2xy2+y)2x2y+x

Step 3: Final Answer:
dydx=(2xy2+y)2x2y+x


Example 23: Implicit Differentiation with a Reciprocal Relationship

Problem:
Find dydx if xy=5.

Answer:
Step 1: Given Data:
The equation is xy=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[xy]=ddx[5]

Using the product rule:
y+xdydx=0

Now solve for dydx:
xdydx=y
dydx=yx

Step 3: Final Answer:
dydx=yx


Example 24: Implicit Differentiation with a Cubic Function

Problem:
Find dydx if x3+y3=9.

Answer:
Step 1: Given Data:
The equation is x3+y3=9.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3+y3]=ddx[9]

Differentiate:
3x2+3y2dydx=0

Now solve for dydx:
3y2dydx=3x2
dydx=3x23y2
dydx=x2y2

Step 3: Final Answer:
dydx=x2y2


Example 25: Implicit Differentiation Involving Exponential Functions

Problem:
Find dydx if exy=x+y.

Answer:
Step 1: Given Data:
The equation is exy=x+y.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[exy]=ddx[x+y]

Using the chain rule:
exy(y+xdydx)=1+dydx

Now distribute:
exyy+exyxdydx=1+dydx

Now collect terms involving dydx:
exyxdydxdydx=1exyy
dydx(exyx1)=1exyy

Now solve for dydx:
dydx=1exyyexyx1

Step 3: Final Answer:
dydx=1exyyexyx1


Example 26: Implicit Differentiation of an Equation with a Square Root

Problem:
Find dydx if x2+y2=10.

Answer:
Step 1: Given Data:
The equation is x2+y2=10.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2+y2]=ddx[10]

Using the chain rule:
12x2+y2(2x+2ydydx)=0

Multiply both sides by 2x2+y2:
2x+2ydydx=0

Now solve for dydx:
2ydydx=2x
dydx=2x2y
dydx=xy

Step 3: Final Answer:
dydx=xy


Example 27: Implicit Differentiation of a Logarithmic Relationship

Problem:
Find dydx if ln(y)+x2=4.

Answer:
Step 1: Given Data:
The equation is ln(y)+x2=4.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[ln(y)]+ddx[x2]=ddx[4]

Using the chain rule for ln(y):
1ydydx+2x=0

Now solve for dydx:
1ydydx=2x
dydx=2xy

Step 3: Final Answer:
dydx=2xy


Example 28: Implicit Differentiation with a Quadratic Relationship

Problem:
Find dydx if x2+3y2=12.

Answer:
Step 1: Given Data:
The equation is x2+3y2=12.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2+3y2]=ddx[12]

Differentiate:
2x+6ydydx=0

Now solve for dydx:
6ydydx=2x
dydx=2x6y
dydx=x3y

Step 3: Final Answer:
dydx=x3y


Example 29: Implicit Differentiation of a Relationship with Mixed Variables

Problem:
Find dydx if xy+x2y2=10.

Answer:
Step 1: Given Data:
The equation is xy+x2y2=10.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[xy]+ddx[x2y2]=ddx[10]

Using the product rule:
y+xdydx+2xydydx+x22ydydx=0

Now combine terms:
y+(x+2xy+2x2y)dydx=0

Now solve for dydx:
(x+2xy+2x2y)dydx=y
dydx=yx+2xy+2x2y

Step 3: Final Answer:
dydx=yx+2xy+2x2y


Example 30: Implicit Differentiation of a Complex Polynomial

Problem:
Find dydx if x4+2y3=16.

Answer:
Step 1: Given Data:
The equation is x4+2y3=16.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x4+2y3]=ddx[16]

Differentiate:
4x3+6y2dydx=0

Now solve for dydx:
6y2dydx=4x3
dydx=4x36y2
dydx=2x33y2

Step 3: Final Answer:
dydx=2x33y2


Example 31: Implicit Differentiation with an Inverse Function

Problem:
Find dydx if x3+y3=3xy.

Answer:
Step 1: Given Data:
The equation is x3+y3=3xy.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3+y3]=ddx[3xy]

Differentiate:
3x2+3y2dydx=3y+3xdydx

Now rearrange:
3y2dydx3xdydx=3y3x2
(3y23x)dydx=3y3x2

Now solve for dydx:
dydx=3y3x23y23x
dydx=yx2y2x

Step 3: Final Answer:
dydx=yx2y2x


Example 32: Implicit Differentiation with Higher Powers

Problem:
Find dydx if x5+y5=5.

Answer:
Step 1: Given Data:
The equation is x5+y5=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x5+y5]=ddx[5]

Differentiate:
5x4+5y4dydx=0

Now solve for dydx:
5y4dydx=5x4
dydx=5x45y4
dydx=x4y4

Step 3: Final Answer:
dydx=x4y4


Example 33: Implicit Differentiation of a Relationship with Mixed Exponents

Problem:
Find dydx if x3y+y3=7.

Answer:
Step 1: Given Data:
The equation is x3y+y3=7.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3y+y3]=ddx[7]

Using the product rule on x3y:
3x2y+x3dydx+3y2dydx=0

Now rearrange:
x3dydx+3y2dydx=3x2y
(x3+3y2)dydx=3x2y

Now solve for dydx:
dydx=3x2yx3+3y2

Step 3: Final Answer:
dydx=3x2yx3+3y2


Example 34: Implicit Differentiation Involving a Reciprocal

Problem:
Find dydx if x+1y=3.

Answer:
Step 1: Given Data:
The equation is x+1y=3.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x+1y]=ddx[3]

Differentiate:
11y2dydx=0

Now solve for dydx:
1y2dydx=1
dydx=y2

Step 3: Final Answer:
dydx=y2


Example 35: Implicit Differentiation of a Cubic Relationship

Problem:
Find dydx if y3+x2y=9.

Answer:
Step 1: Given Data:
The equation is y3+x2y=9.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y3+x2y]=ddx[9]

Differentiate:
3y2dydx+(2xy+x2dydx)=0

Now combine like terms:
(3y2+x2)dydx=2xy

Now solve for dydx:
dydx=2xy3y2+x2

Step 3: Final Answer:
dydx=2xy3y2+x2


Example 36: Implicit Differentiation of a Relation with Exponential Functions

Problem:
Find dydx if ey+x2=10.

Answer:
Step 1: Given Data:
The equation is ey+x2=10.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[ey]+ddx[x2]=ddx[10]

Using the chain rule:
eydydx+2x=0

Now solve for dydx:
eydydx=2x
dydx=2xey

Step 3: Final Answer:
dydx=2xey


Example 37: Implicit Differentiation of an Equation Involving Sine

Problem:
Find dydx if sin(xy)=y+2.

Answer:
Step 1: Given Data:
The equation is sin(xy)=y+2.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[sin(xy)]=ddx[y+2]

Using the chain rule:
cos(xy)(y+xdydx)=dydx

Now simplify:
cos(xy)y+xcos(xy)dydx=dydx

Now collect terms involving dydx:
(xcos(xy)1)dydx=cos(xy)y

Now solve for dydx:
dydx=cos(xy)yxcos(xy)1

Step 3: Final Answer:
dydx=cos(xy)yxcos(xy)1


Example 38: Implicit Differentiation of a Linear Equation

Problem:
Find dydx if x+2y=6.

Answer:
Step 1: Given Data:
The equation is x+2y=6.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x+2y]=ddx[6]

Differentiate:
1+2dydx=0

Now solve for dydx:
2dydx=1
dydx=12

Step 3: Final Answer:
dydx=12


Example 39: Implicit Differentiation of an Inverse Function

Problem:
Find dydx if xyy2=4.

Answer:
Step 1: Given Data:
The equation is xyy2=4.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[xyy2]=ddx[4]

Using the product rule:
y+xdydx2ydydx=0

Now rearrange:
(x2y)dydx=y

Now solve for dydx:
dydx=yx2y

Step 3: Final Answer:
dydx=yx2y


Example 40: Implicit Differentiation of a Relationship Involving Cosine

Problem:
Find dydx if cos(x+y)=xy.

Answer:
Step 1: Given Data:
The equation is cos(x+y)=xy.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[cos(x+y)]=ddx[xy]

Using the chain rule:
sin(x+y)(1+dydx)=1dydx

Now distribute:
sin(x+y)sin(x+y)dydx=1dydx

Now rearrange:
sin(x+y)dydx+dydx=1+sin(x+y)
dydx(sin(x+y)+1)=1+sin(x+y)

Now solve for dydx:
dydx=1+sin(x+y)1sin(x+y)

Step 3: Final Answer:
dydx=1+sin(x+y)1sin(x+y)


Example 41: Implicit Differentiation of a Relationship with Exponential and Polynomial Terms

Problem:
Find dydx if y2+ex=x3+2.

Answer:
Step 1: Given Data:
The equation is y2+ex=x3+2.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2+ex]=ddx[x3+2]

Differentiate:
2ydydx+ex=3x2

Now solve for dydx:
2ydydx=3x2ex
dydx=3x2ex2y

Step 3: Final Answer:
dydx=3x2ex2y


Example 42: Implicit Differentiation of a Relationship with Roots

Problem:
Find dydx if x+y=xy.

Answer:
Step 1: Given Data:
The equation is x+y=xy.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x+y]=ddx[xy]

Using the chain rule:
12x+y(1+dydx)=1dydx

Now multiply by 2x+y:
1+dydx=2x+y(1dydx)

Now distribute:
1+dydx=2x+y2x+ydydx

Now combine terms:
dydx+2x+ydydx=2x+y1
(1+2x+y)dydx=2x+y1

Now solve for dydx:
dydx=2x+y11+2x+y

Step 3: Final Answer:
dydx=2x+y11+2x+y


Example 43: Implicit Differentiation with a Polynomial and Exponential Function

Problem:
Find dydx if x3+y2=ey.

Answer:
Step 1: Given Data:
The equation is x3+y2=ey.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3+y2]=ddx[ey]

Differentiate:
3x2+2ydydx=eydydx

Now rearrange:
2ydydxeydydx=3x2
(2yey)dydx=3x2

Now solve for dydx:
dydx=3x22yey

Step 3: Final Answer:
dydx=3x22yey


Example 44: Implicit Differentiation of an Equation with Trigonometric Functions

Problem:
Find dydx if tan(xy)=x+y.

Answer:
Step 1: Given Data:
The equation is tan(xy)=x+y.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[tan(xy)]=ddx[x+y]

Using the chain rule:
sec2(xy)(y+xdydx)=1+dydx

Now distribute:
sec2(xy)y+sec2(xy)xdydx=1+dydx

Now collect all terms involving dydx:
sec2(xy)xdydxdydx=1sec2(xy)y
dydx(sec2(xy)x1)=1sec2(xy)y

Now solve for dydx:
dydx=1sec2(xy)ysec2(xy)x1

Step 3: Final Answer:
dydx=1sec2(xy)ysec2(xy)x1


Example 45: Implicit Differentiation of a Quadratic Equation

Problem:
Find dydx if x2+4y2=16.

Answer:
Step 1: Given Data:
The equation is x2+4y2=16.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2+4y2]=ddx[16]

Differentiate:
2x+8ydydx=0

Now solve for dydx:
8ydydx=2x
dydx=2x8y
dydx=x4y

Step 3: Final Answer:
dydx=x4y


Example 46: Implicit Differentiation of a Complex Relationship

Problem:
Find dydx if x2y+2y2=10.

Answer:
Step 1: Given Data:
The equation is x2y+2y2=10.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2y+2y2]=ddx[10]

Using the product rule on x2y:
2xy+x2dydx+4ydydx=0

Combine terms:
(x2+4y)dydx=2xy

Now solve for dydx:
dydx=2xyx2+4y

Step 3: Final Answer:
dydx=2xyx2+4y


Example 47: Implicit Differentiation of an Equation with a Root

Problem:
Find dydx if xy=x+1.

Answer:
Step 1: Given Data:
The equation is xy=x+1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[xy]=ddx[x+1]

Using the chain rule:
12xy(y+xdydx)=1

Now multiply by 2xy:
y+xdydx=2xy

Now solve for dydx:
xdydx=2xyy
dydx=2xyyx

Step 3: Final Answer:
dydx=2xyyx


Example 48: Implicit Differentiation of an Equation with a Mixed Relationship

Problem:
Find dydx if x2+y2+xy=7.

Answer:
Step 1: Given Data:
The equation is x2+y2+xy=7.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2+y2+xy]=ddx[7]

Differentiate:
2x+2ydydx+(xdydx+y)=0

Combine like terms:
(2y+x)dydx=2xy

Now solve for dydx:
dydx=2xy2y+x

Step 3: Final Answer:
dydx=2xy2y+x


Example 49: Implicit Differentiation of a Complex Relationship

Problem:
Find dydx if y2+xy2=12.

Answer:
Step 1: Given Data:
The equation is y2+xy2=12.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2+xy2]=ddx[12]

Differentiate:
2ydydx+(y2+2xydydx)=0

Combine terms:
(2y+2xy)dydx=y2

Now solve for dydx:
dydx=y22y+2xy
dydx=y22(y+xy)

Step 3: Final Answer:
dydx=y22(y+xy)


Example 50: Implicit Differentiation of a Quadratic Relationship

Problem:
Find dydx if x2+y24xy=1.

Answer:
Step 1: Given Data:
The equation is x2+y24xy=1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2+y24xy]=ddx[1]

Differentiate:
2x+2ydydx4(y+xdydx)=0

Now combine terms:
2x+2ydydx4y4xdydx=0
(2y4x)dydx=4y2x

Now solve for dydx:
dydx=4y2x2y4x
dydx=2(2yx)2y4x

Step 3: Final Answer:
dydx=2(2yx)2y4x


Example 51: Implicit Differentiation with Mixed Functions

Problem:
Find dydx if x3y+ln(y)=5.

Answer:
Step 1: Given Data:
The equation is x3y+ln(y)=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3y+ln(y)]=ddx[5]

Using the product rule on x3y:
3x2y+x3dydx+1ydydx=0

Now collect terms:
x3dydx+1ydydx=3x2y
(x3+1y)dydx=3x2y

Now solve for dydx:
dydx=3x2yx3+1y

Step 3: Final Answer:
dydx=3x2yx3+1y


Example 52: Implicit Differentiation of an Inverse Function

Problem:
Find dydx if sin(x+y)=yx.

Answer:
Step 1: Given Data:
The equation is sin(x+y)=yx.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[sin(x+y)]=ddx[yx]

Using the chain rule:
cos(x+y)(1+dydx)=dydx1

Now distribute:
cos(x+y)+cos(x+y)dydx=dydx1

Now collect terms:
cos(x+y)dydxdydx=1cos(x+y)
dydx(cos(x+y)1)=1cos(x+y)

Now solve for dydx:
dydx=1cos(x+y)cos(x+y)1

Step 3: Final Answer:
dydx=1cos(x+y)cos(x+y)1


Example 53: Implicit Differentiation of an Equation with Two Variables

Problem:
Find dydx if y2+xy=3.

Answer:
Step 1: Given Data:
The equation is y2+xy=3.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2+xy]=ddx[3]

Differentiate:
2ydydx+(y+xdydx)=0

Now combine terms:
2ydydx+y+xdydx=0
(2y+x)dydx=y

Now solve for dydx:
dydx=y2y+x

Step 3: Final Answer:
dydx=y2y+x


Example 54: Implicit Differentiation with a Fractional Relationship

Problem:
Find dydx if yx+x2=1.

Answer:
Step 1: Given Data:
The equation is yx+x2=1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[yx+x2]=ddx[1]

Using the quotient rule:
1dydxy1x2+2x=0

Multiply by x2:
dydxy+2x3=0
dydx=y2x2

Step 3: Final Answer:
dydx=y2x2


Example 55: Implicit Differentiation with Mixed Powers

Problem:
Find dydx if x2y3+y=5.

Answer:
Step 1: Given Data:
The equation is x2y3+y=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2y3+y]=ddx[5]

Using the product rule:
2xy3+x23y2dydx+dydx=0

Now combine terms:
3x2y2dydx+dydx=2xy3
(3x2y2+1)dydx=2xy3

Now solve for dydx:
dydx=2xy33x2y2+1

Step 3: Final Answer:
dydx=2xy33x2y2+1


Example 56: Implicit Differentiation of a Cubic Polynomial

Problem:
Find dydx if y3+3xy=7.

Answer:
Step 1: Given Data:
The equation is y3+3xy=7.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y3+3xy]=ddx[7]

Differentiate:
3y2dydx+3(y+xdydx)=0

Now combine terms:
3y2dydx+3y+3xdydx=0
(3y2+3x)dydx=3y

Now solve for dydx:
dydx=3y3y2+3x
dydx=yy2+x

Step 3: Final Answer:
dydx=yy2+x


Example 57: Implicit Differentiation of a Complex Relationship

Problem:
Find dydx if y2+x2y=20.

Answer:
Step 1: Given Data:
The equation is y2+x2y=20.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2+x2y]=ddx[20]

Differentiate:
2ydydx+(2xy+x2dydx)=0

Now combine terms:
2ydydx+2xy+x2dydx=0
(2y+x2)dydx=2xy

Now solve for dydx:
dydx=2xy2y+x2

Step 3: Final Answer:
dydx=2xy2y+x2


Example 58: Implicit Differentiation of a Rational Function

Problem:
Find dydx if yx+x2=5.

Answer:
Step 1: Given Data:
The equation is yx+x2=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[yx+x2]=ddx[5]

Using the quotient rule:
xdydxyx2+2x=0

Multiply through by x2:
xdydxy+2x3=0
xdydx=y2x3

Now solve for dydx:
dydx=y2x3x

Step 3: Final Answer:
dydx=y2x3x


Example 59: Implicit Differentiation of a Quadratic Equation

Problem:
Find dydx if 2x2+3y2=8.

Answer:
Step 1: Given Data:
The equation is 2x2+3y2=8.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[2x2+3y2]=ddx[8]

Differentiate:
4x+6ydydx=0

Now solve for dydx:
6ydydx=4x
dydx=4x6y
dydx=2x3y

Step 3: Final Answer:
dydx=2x3y


Example 60: Implicit Differentiation with Mixed Terms

Problem:
Find dydx if x2y+4xy2=1.

Answer:
Step 1: Given Data:
The equation is x2y+4xy2=1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2y+4xy2]=ddx[1]

Using the product rule on x2y:
2xy+x2dydx+4(y2+2xydydx)=0

Combine terms:
2xy+4y2+(x2+8xy)dydx=0

Now solve for dydx:
(x2+8xy)dydx=2xy4y2
dydx=2xy4y2x2+8xy

Step 3: Final Answer:
dydx=2xy4y2x2+8xy


Example 61: Implicit Differentiation of a Logarithmic Equation

Problem:
Find dydx if ln(y)+x3=4.

Answer:
Step 1: Given Data:
The equation is ln(y)+x3=4.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[ln(y)]+ddx[x3]=ddx[4]

Using the chain rule:
1ydydx+3x2=0

Now solve for dydx:
1ydydx=3x2
dydx=3x2y

Step 3: Final Answer:
dydx=3x2y


Example 62: Implicit Differentiation with a Mixed Equation

Problem:
Find dydx if x3y+y3=10.

Answer:
Step 1: Given Data:
The equation is x3y+y3=10.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3y+y3]=ddx[10]

Using the product rule:
3x2y+x3dydx+3y2dydx=0

Now collect terms:
(x3+3y2)dydx=3x2y

Now solve for dydx:
dydx=3x2yx3+3y2

Step 3: Final Answer:
dydx=3x2yx3+3y2


Example 63: Implicit Differentiation of an Equation with Square Roots

Problem:
Find dydx if y+x2=5.

Answer:
Step 1: Given Data:
The equation is y+x2=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y]+ddx[x2]=ddx[5]

Using the chain rule:
12ydydx+2x=0

Now solve for dydx:
12ydydx=2x
dydx=4xy

Step 3: Final Answer:
dydx=4xy


Example 64: Implicit Differentiation with a Rational Equation

Problem:
Find dydx if yx2+y2=3.

Answer:
Step 1: Given Data:
The equation is yx2+y2=3.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[yx2+y2]=ddx[3]

Using the quotient rule on yx2:
x2dydx2yx4+2ydydx=0

Multiply through by x4:
x2dydx2y+2yx2dydx=0

Now combine terms:
(x2+2yx2)dydx=2y

Now solve for dydx:
dydx=2yx2+2yx2

Step 3: Final Answer:
dydx=2yx2+2yx2


Example 65: Implicit Differentiation with Multiple Variables

Problem:
Find dydx if y+x2y2=5.

Answer:
Step 1: Given Data:
The equation is y+x2y2=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y+x2y2]=ddx[5]

Using the product rule:
dydx+(2xy2+x22ydydx)=0

Now collect terms:
dydx+2xy2+2x2ydydx=0
(1+2x2y)dydx=2xy2

Now solve for dydx:
dydx=2xy21+2x2y

Step 3: Final Answer:
dydx=2xy21+2x2y


Example 66: Implicit Differentiation of an Exponential Relationship

Problem:
Find dydx if ey+x3=7.

Answer:
Step 1: Given Data:
The equation is ey+x3=7.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[ey]+ddx[x3]=ddx[7]

Using the chain rule:
eydydx+3x2=0

Now solve for dydx:
eydydx=3x2
dydx=3x2ey

Step 3: Final Answer:
dydx=3x2ey


Example 67: Implicit Differentiation with a Root and Linear Term

Problem:
Find dydx if y+3x=8.

Answer:
Step 1: Given Data:
The equation is y+3x=8.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y]+3=ddx[8]

Using the chain rule:
12ydydx+3=0

Now solve for dydx:
12ydydx=3
dydx=6y

Step 3: Final Answer:
dydx=6y


Example 68: Implicit Differentiation of a Trigonometric Function

Problem:
Find dydx if tan(y)+x2=5.

Answer:
Step 1: Given Data:
The equation is tan(y)+x2=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[tan(y)]+ddx[x2]=ddx[5]

Using the chain rule:
sec2(y)dydx+2x=0

Now solve for dydx:
sec2(y)dydx=2x
dydx=2xsec2(y)
dydx=2xcos2(y)

Step 3: Final Answer:
dydx=2xcos2(y)


Example 69: Implicit Differentiation of a Cubic Relationship

Problem:
Find dydx if y3+2xy=3.

Answer:
Step 1: Given Data:
The equation is y3+2xy=3.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y3+2xy]=ddx[3]

Differentiate:
3y2dydx+2(y+xdydx)=0

Now combine terms:
3y2dydx+2y+2xdydx=0
(3y2+2x)dydx=2y

Now solve for dydx:
dydx=2y3y2+2x

Step 3: Final Answer:
dydx=2y3y2+2x


Example 70: Implicit Differentiation of a Logarithmic Function

Problem:
Find dydx if y+ln(x)=3.

Answer:
Step 1: Given Data:
The equation is y+ln(x)=3.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y]+ddx[ln(x)]=ddx[3]

Differentiate:
dydx+1x=0

Now solve for dydx:
dydx=1x

Step 3: Final Answer:
dydx=1x


Example 71: Implicit Differentiation of a Quadratic Function

Problem:
Find dydx if 2x2+y2=9.

Answer:
Step 1: Given Data:
The equation is 2x2+y2=9.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[2x2+y2]=ddx[9]

Differentiate:
4x+2ydydx=0

Now solve for dydx:
2ydydx=4x
dydx=4x2y
dydx=2xy

Step 3: Final Answer:
dydx=2xy


Example 72: Implicit Differentiation of a Complex Polynomial

Problem:
Find dydx if x4+y4=16.

Answer:
Step 1: Given Data:
The equation is x4+y4=16.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x4+y4]=ddx[16]

Differentiate:
4x3+4y3dydx=0

Now solve for dydx:
4y3dydx=4x3
dydx=4x34y3
dydx=x3y3

Step 3: Final Answer:
dydx=x3y3


Example 73: Implicit Differentiation of a Mixed Relationship

Problem:
Find dydx if x2+4y2xy=0.

Answer:
Step 1: Given Data:
The equation is x2+4y2xy=0.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2+4y2xy]=ddx[0]

Differentiate:
2x+8ydydx(y+xdydx)=0

Now collect terms:
2x+8ydydxyxdydx=0
(8yx)dydx=2x+y

Now solve for dydx:
dydx=2x+y8yx

Step 3: Final Answer:
dydx=2x+y8yx


Example 74: Implicit Differentiation of a Logarithmic Function

Problem:
Find dydx if ln(y)+x2=5.

Answer:
Step 1: Given Data:
The equation is ln(y)+x2=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[ln(y)]+ddx[x2]=ddx[5]

Using the chain rule:
1ydydx+2x=0

Now solve for dydx:
1ydydx=2x
dydx=2xy

Step 3: Final Answer:
dydx=2xy


Example 75: Implicit Differentiation of a Rational Function

Problem:
Find dydx if y2x+x=1.

Answer:
Step 1: Given Data:
The equation is y2x+x=1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2x]+ddx[x]=ddx[1]

Using the quotient rule:
x(2ydydx)y2x2+1=0

Now multiply through by x2:
x(2ydydx)y2+x2=0

Now rearrange:
x(2ydydx)=y2x2

Now solve for dydx:
dydx=y2x22xy

Step 3: Final Answer:
dydx=y2x22xy


Example 76: Implicit Differentiation of a Quadratic Function

Problem:
Find dydx if y24xy=8.

Answer:
Step 1: Given Data:
The equation is y24xy=8.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y24xy]=ddx[8]

Differentiate:
2ydydx4(y+xdydx)=0

Now combine terms:
2ydydx4y4xdydx=0
(2y4x)dydx=4y

Now solve for dydx:
dydx=4y2y4x

Step 3: Final Answer:
dydx=4y2y4x


Example 77: Implicit Differentiation of a Cubic Function

Problem:
Find dydx if y33xy=5.

Answer:
Step 1: Given Data:
The equation is y33xy=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y33xy]=ddx[5]

Differentiate:
3y2dydx(3y+3xdydx)=0

Now combine terms:
(3y23x)dydx=3y

Now solve for dydx:
dydx=3y3y23x
dydx=yy2x

Step 3: Final Answer:
dydx=yy2x


Example 78: Implicit Differentiation of an Exponential Equation

Problem:
Find dydx if ey+y2=x2+1.

Answer:
Step 1: Given Data:
The equation is ey+y2=x2+1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[ey+y2]=ddx[x2+1]

Differentiate:
eydydx+2ydydx=2x

Now combine terms:
(ey+2y)dydx=2x

Now solve for dydx:
dydx=2xey+2y

Step 3: Final Answer:
dydx=2xey+2y


Example 79: Implicit Differentiation of a Mixed Relationship

Problem:
Find dydx if y2+xy=6.

Answer:
Step 1: Given Data:
The equation is y2+xy=6.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2+xy]=ddx[6]

Differentiate:
2ydydx+(y+xdydx)=0

Now combine terms:
(2y+x)dydx=y

Now solve for dydx:
dydx=y2y+x

Step 3: Final Answer:
dydx=y2y+x


Example 80: Implicit Differentiation of a Polynomial Equation

Problem:
Find dydx if x3+3y3=6.

Answer:
Step 1: Given Data:
The equation is x3+3y3=6.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3+3y3]=ddx[6]

Differentiate:
3x2+9y2dydx=0

Now solve for dydx:
9y2dydx=3x2
dydx=3x29y2
dydx=x23y2

Step 3: Final Answer:
dydx=x23y2


Example 81: Implicit Differentiation of a Complex Function

Problem:
Find dydx if x2y+y2=4.

Answer:
Step 1: Given Data:
The equation is x2y+y2=4.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2y+y2]=ddx[4]

Using the product rule on x2y:
2xy+x2dydx+2ydydx=0

Now combine terms:
(x2+2y)dydx=2xy

Now solve for dydx:
dydx=2xyx2+2y

Step 3: Final Answer:
dydx=2xyx2+2y


Example 82: Implicit Differentiation of an Inverse Function

Problem:
Find dydx if x2+y2+2xy=0.

Answer:
Step 1: Given Data:
The equation is x2+y2+2xy=0.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2+y2+2xy]=ddx[0]

Differentiate:
2x+2ydydx+2(y+xdydx)=0

Now collect terms:
2x+2ydydx+2y+2xdydx=0
(2y+2x)dydx=2x2y

Now solve for dydx:
dydx=2(x+y)2(y+x)
dydx=1

Step 3: Final Answer:
dydx=1


Example 83: Implicit Differentiation of a Complex Relationship

Problem:
Find dydx if y2+2x3=8.

Answer:
Step 1: Given Data:
The equation is y2+2x3=8.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2+2x3]=ddx[8]

Differentiate:
2ydydx+6x2=0

Now solve for dydx:
2ydydx=6x2
dydx=6x22y
dydx=3x2y

Step 3: Final Answer:
dydx=3x2y


Example 84: Implicit Differentiation of a Polynomial Relationship

Problem:
Find dydx if y2+3xy=6.

Answer:
Step 1: Given Data:
The equation is y2+3xy=6.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2+3xy]=ddx[6]

Differentiate:
2ydydx+3(y+xdydx)=0

Now combine terms:
2ydydx+3y+3xdydx=0
(2y+3x)dydx=3y

Now solve for dydx:
dydx=3y2y+3x

Step 3: Final Answer:
dydx=3y2y+3x


Example 85: Implicit Differentiation of a Mixed Polynomial

Problem:
Find dydx if 2x2+y2=10.

Answer:
Step 1: Given Data:
The equation is 2x2+y2=10.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[2x2+y2]=ddx[10]

Differentiate:
4x+2ydydx=0

Now solve for dydx:
2ydydx=4x
dydx=4x2y
dydx=2xy

Step 3: Final Answer:
dydx=2xy


Example 86: Implicit Differentiation of a Cubic Polynomial

Problem:
Find dydx if y33x2y=5.

Answer:
Step 1: Given Data:
The equation is y33x2y=5.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y33x2y]=ddx[5]

Differentiate:
3y2dydx(6xy+3x2dydx)=0

Now combine terms:
(3y23x2)dydx=6xy

Now solve for dydx:
dydx=6xy3y23x2
dydx=2xyy2x2

Step 3: Final Answer:
dydx=2xyy2x2


Example 87: Implicit Differentiation of a Relationship Involving Square Roots

Problem:
Find dydx if y+x3=4.

Answer:
Step 1: Given Data:
The equation is y+x3=4.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y]+ddx[x3]=ddx[4]

Using the chain rule:
12ydydx+3x2=0

Now solve for dydx:
12ydydx=3x2
dydx=6x2y

Step 3: Final Answer:
dydx=6x2y


Example 88: Implicit Differentiation of a Relationship with Sine

Problem:
Find dydx if sin(y)+x2=1.

Answer:
Step 1: Given Data:
The equation is sin(y)+x2=1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[sin(y)]+ddx[x2]=ddx[1]

Using the chain rule:
cos(y)dydx+2x=0

Now solve for dydx:
cos(y)dydx=2x
dydx=2xcos(y)

Step 3: Final Answer:
dydx=2xcos(y)


Example 89: Implicit Differentiation of a Polynomial Relationship

Problem:
Find dydx if 3y34xy=8.

Answer:
Step 1: Given Data:
The equation is 3y34xy=8.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[3y34xy]=ddx[8]

Differentiate:
9y2dydx(4y+4xdydx)=0

Now combine terms:
(9y24x)dydx=4y

Now solve for dydx:
dydx=4y9y24x

Step 3: Final Answer:
dydx=4y9y24x


Example 90: Implicit Differentiation of a Mixed Relationship

Problem:
Find dydx if 2x2y+y2=3.

Answer:
Step 1: Given Data:
The equation is 2x2y+y2=3.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[2x2y+y2]=ddx[3]

Using the product rule on 2x2y:
2x2dydx+4xy+2ydydx=0

Now combine terms:
(2x2+2y)dydx=4xy

Now solve for dydx:
dydx=4xy2x2+2y
dydx=2xyx2+y

Step 3: Final Answer:
dydx=2xyx2+y


Example 91: Implicit Differentiation of a Quadratic Function

Problem:
Find dydx if y2+2xy=10.

Answer:
Step 1: Given Data:
The equation is y2+2xy=10.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2+2xy]=ddx[10]

Differentiate:
2ydydx+2(y+xdydx)=0

Now combine terms:
2ydydx+2y+2xdydx=0
(2y+2x)dydx=2y

Now solve for dydx:
dydx=2y2y+2x
dydx=yy+x

Step 3: Final Answer:
dydx=yy+x


Example 92: Implicit Differentiation of a Cubic Function

Problem:
Find dydx if y3+x3=1.

Answer:
Step 1: Given Data:
The equation is y3+x3=1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y3+x3]=ddx[1]

Differentiate:
3y2dydx+3x2=0

Now solve for dydx:
3y2dydx=3x2
dydx=3x23y2
dydx=x2y2

Step 3: Final Answer:
dydx=x2y2


Example 93: Implicit Differentiation of an Exponential Relationship

Problem:
Find dydx if ey+x2=2.

Answer:
Step 1: Given Data:
The equation is ey+x2=2.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[ey]+ddx[x2]=ddx[2]

Using the chain rule:
eydydx+2x=0

Now solve for dydx:
eydydx=2x
dydx=2xey

Step 3: Final Answer:
dydx=2xey


Example 94: Implicit Differentiation of a Mixed Polynomial

Problem:
Find dydx if x3+y3=27.

Answer:
Step 1: Given Data:
The equation is x3+y3=27.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3+y3]=ddx[27]

Differentiate:
3x2+3y2dydx=0

Now solve for dydx:
3y2dydx=3x2
dydx=3x23y2
dydx=x2y2

Step 3: Final Answer:
dydx=x2y2


Example 95: Implicit Differentiation of a Rational Function

Problem:
Find dydx if y2x+x=4.

Answer:
Step 1: Given Data:
The equation is y2x+x=4.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2x+x]=ddx[4]

Using the quotient rule on y2x:
x(2ydydx)y2x2+1=0

Now multiply by x2:
x(2ydydx)y2+x2=0

Now rearrange:
x(2ydydx)=y2x2

Now solve for dydx:
dydx=y2x22xy

Step 3: Final Answer:
dydx=y2x22xy


Example 96: Implicit Differentiation of a Complex Function

Problem:
Find dydx if y+ln(y)=x.

Answer:
Step 1: Given Data:
The equation is y+ln(y)=x.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y]+ddx[ln(y)]=ddx[x]

Using the chain rule:
dydx+1ydydx=1

Now combine terms:
(1+1y)dydx=1

Now solve for dydx:
dydx=yy+1

Step 3: Final Answer:
dydx=yy+1


Example 97: Implicit Differentiation of a Polynomial Relationship

Problem:
Find dydx if y2+2x2y=12.

Answer:
Step 1: Given Data:
The equation is y2+2x2y=12.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y2+2x2y]=ddx[12]

Using the product rule on 2x2y:
2ydydx+2y+4xydydx=0

Now combine terms:
(2y+4xy)dydx=2y

Now solve for dydx:
dydx=2y2y+4xy
dydx=yy+2xy

Step 3: Final Answer:
dydx=yy+2xy


Example 98: Implicit Differentiation of a Mixed Polynomial

Problem:
Find dydx if x2+y33xy=0.

Answer:
Step 1: Given Data:
The equation is x2+y33xy=0.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x2+y33xy]=0

Differentiate:
2x+3y2dydx(3y+3xdydx)=0

Now combine terms:
3y2dydx3xdydx=2x3y
(3y23x)dydx=2x3y

Now solve for dydx:
dydx=2x3y3y23x

Step 3: Final Answer:
dydx=2x3y3y23x


Example 99: Implicit Differentiation of a Logarithmic Relationship

Problem:
Find dydx if y+ln(x)=1.

Answer:
Step 1: Given Data:
The equation is y+ln(x)=1.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[y]+ddx[ln(x)]=ddx[1]

Differentiate:
dydx+1x=0

Now solve for dydx:
dydx=1x

Step 3: Final Answer:
dydx=1x


Example 100: Implicit Differentiation of a Cubic Relationship

Problem:
Find dydx if x3+y3=3xy.

Answer:
Step 1: Given Data:
The equation is x3+y3=3xy.

Step 2: Solution:
Differentiate both sides with respect to x:
ddx[x3+y3]=ddx[3xy]

Differentiate:
3x2+3y2dydx=3(y+xdydx)

Now rearrange:
3y2dydx3xdydx=3y3x2
(3y23x)dydx=3y3x2

Now solve for dydx:
dydx=3y3x23y23x
dydx=yx2y2x

Step 3: Final Answer:
dydx=yx2y2x

adbhutah
adbhutah

adbhutah.com

Articles: 1315