Answer:
Given:
The population proportion $(p^*)=0.35$
The margin of error $(e)=0.06$
The confidence interval level $=92%$
Solution:
โ The significance level at 92% confidence interval:
$(\alpha)=1-0.92=0.08$
โ The critical value at 0.08 significance level $(z_c)=1.75$
$ \Rightarrow $ The sample size $(n):$
โ Here we need to use a margin of error formula to find out the sample size
$$ \therefore e = z_c \cdot \sqrt{\frac{p(1 – p)}{n}} \quad $$ $$ \therefore 0.06 = 1.75 \cdot \sqrt{\frac{0.35(1 – 0.35)}{n}} \quad $$ $$ \therefore n = 193.533 $$ $$ \approx 194 $$
Final answer:
The sample size $(n) = 194 $