Let X be normally distributed with mean $μ = 2.1$ and standard deviation $σ = 3$.

a. Find P(X > 6.5). b. Find P(5.5 <= X <= 7.5).

Answer :

Given :

The population mean $(μ) = 2.1$

The population standard deviation $(σ) = 3$

Solution :

a) The probability that x is more than 6.5 :

$$\text{P}(x > 6.5) = \text{P}\left(\frac{x – \mu}{\sigma} > \frac{6.5 – 2.1}{3}\right)$$ $$= \text{P}(z > 1.47)$$ $$= 1 – \text{P}(z < 1.47)$$ $$= 1 – 0.9292$$ $$= 0.0708$$

b) the probability that x is between 5.5 and 7.5 ( including ) :

$$\text{P}(5.5 \leq x \leq 7.5) = \text{P}\left(\frac{5.5 – 2.1}{3} \leq \frac{x – \mu}{\sigma} \leq \frac{7.5 – 2.1}{3}\right)$$ $$= \text{P}(1.13 \leq z \leq 1.8)$$ $$= \text{P}(z \leq 1.8) – \text{P}(z < 1.13)$$ $$= 0.9641 – 0.8708$$ $$= 0.0933$$

adbhutah
adbhutah

adbhutah.com

Articles: 1279