Limits and Continuity

In calculus, limits are used to define both the derivative and the integral. They also help us understand the behavior of functions as they approach specific points or as they go to infinity. Continuity ensures that a function behaves smoothly and predictably at every point in its domain.


1. Definition of a Limit

The limit of a function f(x) as x approaches some value a is the value that f(x) gets closer to as x gets closer to a. This is written as:

limxaf(x)=L

This means that as x gets closer to a (from either the left or right), f(x) approaches the value L.

Example 1: Finding a Limit

Problem:
Find limx3(2x+1).

Answer:
Step 1: Given Data:
f(x)=2x+1

Step 2: Solution:
Substitute x=3 into the function:
f(3)=2(3)+1
=6+1
=7

Step 3: Final Answer:
limx3(2x+1)=7


2. One-Sided Limits

A one-sided limit considers the behavior of a function as x approaches a from only one side, either from the left or the right.

  • Left-hand limit: limxaf(x)
    This is the limit of f(x) as x approaches a from the left side.
  • Right-hand limit: limxa+f(x)
    This is the limit of f(x) as x approaches a from the right side.

Example 2: One-Sided Limit

Problem:
Find limx2(3x4) and limx2+(3x4).

Answer:
Step 1: Given Data:
f(x)=3x4

Step 2: Solution (left-hand limit):
Substitute x=2 from the left:
limx2(3x4)=3(2)4
=64
=2

Step 3: Final Answer (left-hand limit):
limx2(3x4)=2

Step 4: Solution (right-hand limit):
Substitute x=2 from the right:
limx2+(3x4)=3(2)4
=64
=2

Step 5: Final Answer (right-hand limit):
limx2+(3x4)=2


3. Continuity

A function is said to be continuous at a point x=a if the following three conditions are met:

  1. f(a) is defined.
  2. limxaf(x) exists.
  3. limxaf(x)=f(a).

If these three conditions hold, we say that f(x) is continuous at x=a.

Example 3: Checking Continuity

Problem:
Determine if the function f(x)=2x+3 is continuous at x=1.

Answer:
Step 1: Given Data:
f(x)=2x+3

Step 2: Solution (checking conditions for continuity):

  • First, check if f(1) is defined:
    f(1)=2(1)+3
    =2+3
    =5
    Since f(1) is defined, condition 1 is satisfied.
  • Next, find limx1f(x):
    limx1(2x+3)=2(1)+3
    =5
    Since the limit exists, condition 2 is satisfied.
  • Finally, check if the limit equals the value of the function:
    limx1f(x)=f(1)=5

Step 3: Final Answer:
Since all three conditions are met, f(x) is continuous at x=1.


4. Limits at Infinity

A limit at infinity describes the behavior of a function as x approaches infinity () or negative infinity (). For example, if the function f(x) approaches some value L as x increases without bound, we write:

limxf(x)=L

Similarly, if x approaches negative infinity:

limxf(x)=L

Example 4: Limit at Infinity

Problem:
Find limx3x.

Answer:
Step 1: Given Data:
f(x)=3x

Step 2: Solution:
As x increases without bound, 3x gets closer to zero.
limx3x=0

Step 3: Final Answer:
limx3x=0


5. Special Limits

There are several important limits that appear frequently in calculus. One of the most famous special limits is:

limx0sin(x)x=1

This result is often used in conjunction with L’Hôpital’s rule or when working with trigonometric limits.

Example 5: Special Limit

Problem:
Find limx0sin(2x)x.

Answer:
Step 1: Given Data:
f(x)=sin(2x)x

Step 2: Solution:
We can rewrite the limit as:
limx0sin(2x)x=limx02sin(2x)2x

We know that limx0sin(2x)2x=1, so we multiply by 2:
=2×1

Step 3: Final Answer:
limx0sin(2x)x=2


Conclusion

Limits are fundamental in calculus, providing the foundation for defining derivatives and integrals. They allow us to analyze the behavior of functions as they approach specific values or infinity. Continuity, on the other hand, ensures that functions behave smoothly at every point in their domain. Understanding how to compute and interpret limits is essential for working with continuous functions and their applications.


Question And Answer Library

Example 1
Problem:
Find limx2(3x+4).

Answer:
Step 1: Given Data:
f(x)=3x+4

Step 2: Solution:
Substitute x=2 into the function:
f(2)=3(2)+4=6+4=10

Step 3: Final Answer:
limx2(3x+4)=10


Example 2
Problem:
Find limx1(x23x+2).

Answer:
Step 1: Given Data:
f(x)=x23x+2

Step 2: Solution:
Substitute x=1 into the function:
f(1)=(1)23(1)+2=1+3+2=6

Step 3: Final Answer:
limx1(x23x+2)=6


Example 3
Problem:
Find limx4(x216).

Answer:
Step 1: Given Data:
f(x)=x216

Step 2: Solution:
Substitute x=4 into the function:
f(4)=4216=1616=0

Step 3: Final Answer:
limx4(x216)=0


Example 4
Problem:
Find limx01x+1.

Answer:
Step 1: Given Data:
f(x)=1x+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=10+1=11=1

Step 3: Final Answer:
limx01x+1=1


Example 5
Problem:
Find limx1(4xx2).

Answer:
Step 1: Given Data:
f(x)=4xx2

Step 2: Solution:
Substitute x=1 into the function:
f(1)=4(1)(1)2=41=3

Step 3: Final Answer:
limx1(4xx2)=3


Example 6
Problem:
Find limx3(x2+2x5).

Answer:
Step 1: Given Data:
f(x)=x2+2x5

Step 2: Solution:
Substitute x=3 into the function:
f(3)=(3)2+2(3)5=9+65=10

Step 3: Final Answer:
limx3(x2+2x5)=10


Example 7
Problem:
Find limx2(x3+4).

Answer:
Step 1: Given Data:
f(x)=x3+4

Step 2: Solution:
Substitute x=2 into the function:
f(2)=(2)3+4=8+4=4

Step 3: Final Answer:
limx2(x3+4)=4


Example 8
Problem:
Find limx0(x2+2x+1).

Answer:
Step 1: Given Data:
f(x)=x2+2x+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=(0)2+2(0)+1=1

Step 3: Final Answer:
limx0(x2+2x+1)=1


Example 9
Problem:
Find limx5(x+7).

Answer:
Step 1: Given Data:
f(x)=x+7

Step 2: Solution:
Substitute x=5 into the function:
f(5)=5+7=12

Step 3: Final Answer:
limx5(x+7)=12


Example 10
Problem:
Find limx11x21.

Answer:
Step 1: Given Data:
f(x)=1x21

Step 2: Solution:
Substitute x=1 into the function:
f(1)=1(1)21=10

Step 3: Final Answer:
Since dividing by zero is undefined, limx11x21 does not exist.


Example 11
Problem:
Find limx2(x24x+5).

Answer:
Step 1: Given Data:
f(x)=x24x+5

Step 2: Solution:
Substitute x=2 into the function:
f(2)=(2)24(2)+5=48+5=1

Step 3: Final Answer:
limx2(x24x+5)=1


Example 12
Problem:
Find limx02xx+1.

Answer:
Step 1: Given Data:
f(x)=2xx+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=2(0)0+1=0

Step 3: Final Answer:
limx02xx+1=0


Example 13
Problem:
Find limx3(x2+9).

Answer:
Step 1: Given Data:
f(x)=x2+9

Step 2: Solution:
Substitute x=3 into the function:
f(3)=(3)2+9=9+9=18

Step 3: Final Answer:
limx3(x2+9)=18


Example 14
Problem:
Find limx1(5x2).

Answer:
Step 1: Given Data:
f(x)=5x2

Step 2: Solution:
Substitute x=1 into the function:
f(1)=5(1)2=52=3

Step 3: Final Answer:
limx1(5x2)=3


Example 15
Problem:
Find limx4(x33x2+5).

Answer:
Step 1: Given Data:
f(x)=x33x2+5

Step 2: Solution:
Substitute x=4 into the function:
f(4)=(4)33(4)2+5=6448+5=21

Step 3: Final Answer:
limx4(x33x2+5)=21


Example 16
Problem:
Find limx2(x4x2+1).

Answer:
Step 1: Given Data:
f(x)=x4x2+1

Step 2: Solution:
Substitute x=2 into the function:
f(2)=(2)4(2)2+1=164+1=13

Step 3: Final Answer:
limx2(x4x2+1)=13


Example 17
Problem:
Find limx3x2+1x1.

Answer:
Step 1: Given Data:
f(x)=x2+1x1

Step 2: Solution:
Substitute x=3 into the function:
f(3)=(3)2+131=9+12=102=5

Step 3: Final Answer:
limx3x2+1x1=5


Example 18
Problem:
Find limx11x.

Answer:
Step 1: Given Data:
f(x)=1x

Step 2: Solution:
Substitute x=1 into the function:
f(1)=11=1

Step 3: Final Answer:
limx11x=1


Example 19
Problem:
Find limx1(x3+2x).

Answer:
Step 1: Given Data:
f(x)=x3+2x

Step 2: Solution:
Substitute x=1 into the function:
f(1)=(1)3+2(1)=12=3

Step 3: Final Answer:
limx1(x3+2x)=3


Example 20
Problem:
Find limx2x24x2.

Answer:
Step 1: Given Data:
f(x)=x24x2

Step 2: Solution:
Factor the numerator:
(x2)(x+2)x2

Cancel the common factor:
x+2

Substitute x=2 into the simplified expression:
f(2)=2+2=4

Step 3: Final Answer:
limx2x24x2=4


Example 21
Problem:
Find limx0(5x3x2).

Answer:
Step 1: Given Data:
f(x)=5x3x2

Step 2: Solution:
Substitute x=0 into the function:
f(0)=5(0)3(0)2=0

Step 3: Final Answer:
limx0(5x3x2)=0


Example 22
Problem:
Find limx1(x2x+1).

Answer:
Step 1: Given Data:
f(x)=x2x+1

Step 2: Solution:
Substitute x=1 into the function:
f(1)=(1)21+1=1

Step 3: Final Answer:
limx1(x2x+1)=1


Example 23
Problem:
Find limx22x3x+1.

Answer:
Step 1: Given Data:
f(x)=2x3x+1

Step 2: Solution:
Substitute x=2 into the function:
f(2)=2(2)32+1=433=13

Step 3: Final Answer:
limx22x3x+1=13


Example 24
Problem:
Find limx0xx+2.

Answer:
Step 1: Given Data:
f(x)=xx+2

Step 2: Solution:
Substitute x=0 into the function:
f(0)=00+2=0

Step 3: Final Answer:
limx0xx+2=0


Example 25
Problem:
Find limx1x+1x21.

Answer:
Step 1: Given Data:
f(x)=x+1x21

Step 2: Solution:
Substitute x=1 into the function:
f(1)=1+1(1)21=00

Step 3: Final Answer:
Since dividing by zero is undefined, limx1x+1x21 does not exist.


Example 26
Problem:
Find limx0(4x23x).

Answer:
Step 1: Given Data:
f(x)=4x23x

Step 2: Solution:
Substitute x=0 into the function:
f(0)=4(0)23(0)=0

Step 3: Final Answer:
limx0(4x23x)=0


Example 27
Problem:
Find limx1x21x1.

Answer:
Step 1: Given Data:
f(x)=x21x1

Step 2: Solution:
Factor the numerator:
(x1)(x+1)x1

Cancel the common factor:
x+1

Substitute x=1 into the simplified expression:
f(1)=1+1=2

Step 3: Final Answer:
limx1x21x1=2


Example 28
Problem:
Find limx2(5x26x+2).

Answer:
Step 1: Given Data:
f(x)=5x26x+2

Step 2: Solution:
Substitute x=2 into the function:
f(2)=5(2)26(2)+2=2012+2=10

Step 3: Final Answer:
limx2(5x26x+2)=10


Example 29
Problem:
Find limx2(3x24x+1).

Answer:
Step 1: Given Data:
f(x)=3x24x+1

Step 2: Solution:
Substitute x=2 into the function:
f(2)=3(2)24(2)+1=12+8+1=21

Step 3: Final Answer:
limx2(3x24x+1)=21


Example 30
Problem:
Find limx02xx2+1.

Answer:
Step 1: Given Data:
f(x)=2xx2+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=2(0)02+1=0

Step 3: Final Answer:
limx02xx2+1=0


Example 31
Problem:
Find limx3(2x25x+7).

Answer:
Step 1: Given Data:
f(x)=2x25x+7

Step 2: Solution:
Substitute x=3 into the function:
f(3)=2(3)25(3)+7=1815+7=10

Step 3: Final Answer:
limx3(2x25x+7)=10


Example 32
Problem:
Find limx0x2x+1.

Answer:
Step 1: Given Data:
f(x)=x2x+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=020+1=0

Step 3: Final Answer:
limx0x2x+1=0


Example 33
Problem:
Find limx2x2x24.

Answer:
Step 1: Given Data:
f(x)=x2x24

Step 2: Solution:
Factor the denominator:
x2(x2)(x+2)

Cancel the common factor:
1x+2

Substitute x=2 into the simplified expression:
f(2)=12+2=14

Step 3: Final Answer:
limx2x2x24=14


Example 34
Problem:
Find limx12x+3x21.

Answer:
Step 1: Given Data:
f(x)=2x+3x21

Step 2: Solution:
Substitute x=1 into the function:
f(1)=2(1)+3(1)21=2+311=10

Step 3: Final Answer:
Since dividing by zero is undefined, limx12x+3x21 does not exist.


Example 35
Problem:
Find limx0xx3+1.

Answer:
Step 1: Given Data:
f(x)=xx3+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=003+1=0

Step 3: Final Answer:
limx0xx3+1=0


Example 36
Problem:
Find limx1x21x1.

Answer:
Step 1: Given Data:
f(x)=x21x1

Step 2: Solution:
Factor the numerator:
(x1)(x+1)x1

Cancel the common factor:
x+1

Substitute x=1 into the simplified expression:
f(1)=1+1=2

Step 3: Final Answer:
limx1x21x1=2


Example 37
Problem:
Find limx2x22xx2.

Answer:
Step 1: Given Data:
f(x)=x22xx2

Step 2: Solution:
Factor the numerator:
x(x2)x2

Cancel the common factor:
x

Substitute x=2 into the simplified expression:
f(2)=2

Step 3: Final Answer:
limx2x22xx2=2


Example 38
Problem:
Find limx03xx2+4.

Answer:
Step 1: Given Data:
f(x)=3xx2+4

Step 2: Solution:
Substitute x=0 into the function:
f(0)=3(0)02+4=0

Step 3: Final Answer:
limx03xx2+4=0


Example 39
Problem:
Find limx2(x24).

Answer:
Step 1: Given Data:
f(x)=x24

Step 2: Solution:
Substitute x=2 into the function:
f(2)=(2)24=44=0

Step 3: Final Answer:
limx2(x24)=0


Example 40
Problem:
Find limx1(x3+2x21).

Answer:
Step 1: Given Data:
f(x)=x3+2x21

Step 2: Solution:
Substitute x=1 into the function:
f(1)=(1)3+2(1)21=1+21=0

Step 3: Final Answer:
limx1(x3+2x21)=0


Example 41
Problem:
Find limx32x23xx1.

Answer:
Step 1: Given Data:
f(x)=2x23xx1

Step 2: Solution:
Substitute x=3 into the function:
f(3)=2(3)23(3)31=1892=92

Step 3: Final Answer:
limx32x23xx1=92


Example 42
Problem:
Find limx0x22x+1.

Answer:
Step 1: Given Data:
f(x)=x22x+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=022(0)+1=0

Step 3: Final Answer:
limx0x22x+1=0


Example 43
Problem:
Find limx4x216x4.

Answer:
Step 1: Given Data:
f(x)=x216x4

Step 2: Solution:
Factor the numerator:
(x4)(x+4)x4

Cancel the common factor:
x+4

Substitute x=4 into the simplified expression:
f(4)=4+4=8

Step 3: Final Answer:
limx4x216x4=8


Example 44
Problem:
Find limx03x2x+2.

Answer:
Step 1: Given Data:
f(x)=3x2x+2

Step 2: Solution:
Substitute x=0 into the function:
f(0)=3(0)20+2=0

Step 3: Final Answer:
limx03x2x+2=0


Example 45
Problem:
Find limx2x24x+2.

Answer:
Step 1: Given Data:
f(x)=x24x+2

Step 2: Solution:
Factor the numerator:
(x2)(x+2)x+2

Cancel the common factor:
x2

Substitute x=2 into the simplified expression:
f(2)=22=4

Step 3: Final Answer:
limx2x24x+2=4


Example 46
Problem:
Find limx1x2xx1.

Answer:
Step 1: Given Data:
f(x)=x2xx1

Step 2: Solution:
Factor the numerator:
x(x1)x1

Cancel the common factor:
x

Substitute x=1 into the simplified expression:
f(1)=1

Step 3: Final Answer:
limx1x2xx1=1


Example 47
Problem:
Find limx04xx2+1.

Answer:
Step 1: Given Data:
f(x)=4xx2+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=4(0)02+1=0

Step 3: Final Answer:
limx04xx2+1=0


Example 48
Problem:
Find limx2x2+3x4x2.

Answer:
Step 1: Given Data:
f(x)=x2+3x4x2

Step 2: Solution:
Factor the numerator:
(x2)(x+4)x2

Cancel the common factor:
x+4

Substitute x=2 into the simplified expression:
f(2)=2+4=6

Step 3: Final Answer:
limx2x2+3x4x2=6


Example 49
Problem:
Find limx15x24xx1.

Answer:
Step 1: Given Data:
f(x)=5x24xx1

Step 2: Solution:
Substitute x=1 into the function:
f(1)=5(1)24(1)11=540

Step 3: Final Answer:
Since dividing by zero is undefined, limx15x24xx1 does not exist.


Example 50
Problem:
Find limx02x3x2+1.

Answer:
Step 1: Given Data:
f(x)=2x3x2+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=2(0)302+1=0

Step 3: Final Answer:
limx02x3x2+1=0


Example 51
Problem:
Find limx3x29x3.

Answer:
Step 1: Given Data:
f(x)=x29x3

Step 2: Solution:
Factor the numerator:
(x3)(x+3)x3

Cancel the common factor:
x+3

Substitute x=3 into the simplified expression:
f(3)=3+3=6

Step 3: Final Answer:
limx3x29x3=6


Example 52
Problem:
Find limx0x2+2xx+1.

Answer:
Step 1: Given Data:
f(x)=x2+2xx+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=02+2(0)0+1=0

Step 3: Final Answer:
limx0x2+2xx+1=0


Example 53
Problem:
Find limx4x4x216.

Answer:
Step 1: Given Data:
f(x)=x4x216

Step 2: Solution:
Factor the denominator:
x4(x4)(x+4)

Cancel the common factor:
1x+4

Substitute x=4 into the simplified expression:
f(4)=14+4=18

Step 3: Final Answer:
limx4x4x216=18


Example 54
Problem:
Find limx32x2+5x+3x+3.

Answer:
Step 1: Given Data:
f(x)=2x2+5x+3x+3

Step 2: Solution:
Factor the numerator:
(x+3)(2x+1)x+3

Cancel the common factor:
2x+1

Substitute x=3 into the simplified expression:
f(3)=2(3)+1=6+1=5

Step 3: Final Answer:
limx32x2+5x+3x+3=5


Example 55
Problem:
Find limx05xx+1.

Answer:
Step 1: Given Data:
f(x)=5xx+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=5(0)0+1=0

Step 3: Final Answer:
limx05xx+1=0


Example 56
Problem:
Find limx1x31x1.

Answer:
Step 1: Given Data:
f(x)=x31x1

Step 2: Solution:
Factor the numerator:
(x1)(x2+x+1)x1

Cancel the common factor:
x2+x+1

Substitute x=1 into the simplified expression:
f(1)=12+1+1=3

Step 3: Final Answer:
limx1x31x1=3


Example 57
Problem:
Find limx0x2x2.

Answer:
Step 1: Given Data:
f(x)=x2x2

Step 2: Solution:
Substitute x=0 into the function:
f(0)=0202=0

Step 3: Final Answer:
limx0x2x2=0


Example 58
Problem:
Find limx03xx+5.

Answer:
Step 1: Given Data:
f(x)=3xx+5

Step 2: Solution:
Substitute x=0 into the function:
f(0)=3(0)0+5=0

Step 3: Final Answer:
limx03xx+5=0


Example 59
Problem:
Find limx2x24x2.

Answer:
Step 1: Given Data:
f(x)=x24x2

Step 2: Solution:
Factor the numerator:
(x2)(x+2)x2

Cancel the common factor:
x+2

Substitute x=2 into the simplified expression:
f(2)=2+2=4

Step 3: Final Answer:
limx2x24x2=4


Example 60
Problem:
Find limx1x3xx1.

Answer:
Step 1: Given Data:
f(x)=x3xx1

Step 2: Solution:
Factor the numerator:
x(x1)(x+1)x1

Cancel the common factor:
x(x+1)

Substitute x=1 into the simplified expression:
f(1)=1(1+1)=2

Step 3: Final Answer:
limx1x3xx1=2


Example 61
Problem:
Find limx02xx+1.

Answer:
Step 1: Given Data:
f(x)=2xx+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=2(0)0+1=0

Step 3: Final Answer:
limx02xx+1=0


Example 62
Problem:
Find limx4x216x24x.

Answer:
Step 1: Given Data:
f(x)=x216x24x

Step 2: Solution:
Factor both the numerator and denominator:
(x4)(x+4)x(x4)

Cancel the common factor:
x+4x

Substitute x=4 into the simplified expression:
f(4)=4+44=84=2

Step 3: Final Answer:
limx4x216x24x=2


Example 63
Problem:
Find limx0x3x2+1.

Answer:
Step 1: Given Data:
f(x)=x3x2+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=0302+1=01=0

Step 3: Final Answer:
limx0x3x2+1=0


Example 64
Problem:
Find limx12x21x1.

Answer:
Step 1: Given Data:
f(x)=2x21x1

Step 2: Solution:
Substitute x=1 into the function:
f(1)=2(1)2111=210

Step 3: Final Answer:
Since dividing by zero is undefined, limx12x21x1 does not exist.


Example 65
Problem:
Find limx2x38x2.

Answer:
Step 1: Given Data:
f(x)=x38x2

Step 2: Solution:
Factor the numerator:
(x2)(x2+2x+4)x2

Cancel the common factor:
x2+2x+4

Substitute x=2 into the simplified expression:
f(2)=(2)2+2(2)+4=4+4+4=12

Step 3: Final Answer:
limx2x38x2=12


Example 66
Problem:
Find limx1x2+xx+1.

Answer:
Step 1: Given Data:
f(x)=x2+xx+1

Step 2: Solution:
Factor the numerator:
x(x+1)x+1

Cancel the common factor:
x

Substitute x=1 into the simplified expression:
f(1)=1

Step 3: Final Answer:
limx1x2+xx+1=1


Example 67
Problem:
Find limx0x3+1x+1.

Answer:
Step 1: Given Data:
f(x)=x3+1x+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=(0)3+10+1=11=1

Step 3: Final Answer:
limx0x3+1x+1=1


Example 68
Problem:
Find limx3x29x3.

Answer:
Step 1: Given Data:
f(x)=x29x3

Step 2: Solution:
Factor the numerator:
(x3)(x+3)x3

Cancel the common factor:
x+3

Substitute x=3 into the simplified expression:
f(3)=3+3=6

Step 3: Final Answer:
limx3x29x3=6


Example 69
Problem:
Find limx2x2+4x+2.

Answer:
Step 1: Given Data:
f(x)=x2+4x+2

Step 2: Solution:
Substitute x=2 into the function:
f(2)=(2)2+42+2=4+40

Step 3: Final Answer:
Since dividing by zero is undefined, limx2x2+4x+2 does not exist.


Example 70
Problem:
Find limx1x1x21.

Answer:
Step 1: Given Data:
f(x)=x1x21

Step 2: Solution:
Factor the denominator:
x1(x1)(x+1)

Cancel the common factor:
1x+1

Substitute x=1 into the simplified expression:
f(1)=11+1=12

Step 3: Final Answer:
limx1x1x21=12


Example 71
Problem:
Find limx0x2+2x+1x+1.

Answer:
Step 1: Given Data:
f(x)=x2+2x+1x+1

Step 2: Solution:
Factor the numerator:
(x+1)(x+1)x+1

Cancel the common factor:
x+1

Substitute x=0 into the simplified expression:
f(0)=0+1=1

Step 3: Final Answer:
limx0x2+2x+1x+1=1


Example 72
Problem:
Find limx1x3+1x+1.

Answer:
Step 1: Given Data:
f(x)=x3+1x+1

Step 2: Solution:
Factor the numerator:
(x+1)(x2x+1)x+1

Cancel the common factor:
x2x+1

Substitute x=1 into the simplified expression:
f(1)=(1)2(1)+1=1+1+1=3

Step 3: Final Answer:
limx1x3+1x+1=3


Example 73
Problem:
Find limx02x2x+2.

Answer:
Step 1: Given Data:
f(x)=2x2x+2

Step 2: Solution:
Substitute x=0 into the function:
f(0)=2(0)20+2=0

Step 3: Final Answer:
limx02x2x+2=0


Example 74
Problem:
Find limx2x38x2.

Answer:
Step 1: Given Data:
f(x)=x38x2

Step 2: Solution:
Factor the numerator:
(x2)(x2+2x+4)x2

Cancel the common factor:
x2+2x+4

Substitute x=2 into the simplified expression:
f(2)=(2)2+2(2)+4=4+4+4=12

Step 3: Final Answer:
limx2x38x2=12


Example 75
Problem:
Find limx04x2+2xx+2.

Answer:
Step 1: Given Data:
f(x)=4x2+2xx+2

Step 2: Solution:
Substitute x=0 into the function:
f(0)=4(0)2+2(0)0+2=0

Step 3: Final Answer:
limx04x2+2xx+2=0


Example 76
Problem:
Find limx2x2+4xx+2.

Answer:
Step 1: Given Data:
f(x)=x2+4xx+2

Step 2: Solution:
Factor the numerator:
x(x+4)x+2

Substitute x=2 into the simplified expression:
f(2)=(2)2+4(2)2+2=480

Step 3: Final Answer:
Since dividing by zero is undefined, limx2x2+4xx+2 does not exist.


Example 77
Problem:
Find limx1x21x1.

Answer:
Step 1: Given Data:
f(x)=x21x1

Step 2: Solution:
Factor the numerator:
(x1)(x+1)x1

Cancel the common factor:
x+1

Substitute x=1 into the simplified expression:
f(1)=1+1=2

Step 3: Final Answer:
limx1x21x1=2


Example 78
Problem:
Find limx05x3+2xx+2.

Answer:
Step 1: Given Data:
f(x)=5x3+2xx+2

Step 2: Solution:
Substitute x=0 into the function:
f(0)=5(0)3+2(0)0+2=0

Step 3: Final Answer:
limx05x3+2xx+2=0


Example 79
Problem:
Find limx3x29x3.

Answer:
Step 1: Given Data:
f(x)=x29x3

Step 2: Solution:
Factor the numerator:
(x3)(x+3)x3

Cancel the common factor:
x+3

Substitute x=3 into the simplified expression:
f(3)=3+3=6

Step 3: Final Answer:
limx3x29x3=6


Example 80
Problem:
Find limx2x3+8x+2.

Answer:
Step 1: Given Data:
f(x)=x3+8x+2

Step 2: Solution:
Factor the numerator:
(x+2)(x22x+4)x+2

Cancel the common factor:
x22x+4

Substitute x=2 into the simplified expression:
f(2)=(2)22(2)+4=4+4+4=12

Step 3: Final Answer:
limx2x3+8x+2=12


Example 81
Problem:
Find limx1x21x22x+1.

Answer:
Step 1: Given Data:
f(x)=x21x22x+1

Step 2: Solution:
Factor both the numerator and denominator:
(x1)(x+1)(x1)2

Cancel the common factor:
x+1x1

Substitute x=1 into the simplified expression:
f(1)=1+111

Step 3: Final Answer:
Since dividing by zero is undefined, limx1x21x22x+1 does not exist.


Example 82
Problem:
Find limx02x2+3xx+1.

Answer:
Step 1: Given Data:
f(x)=2x2+3xx+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=2(0)2+3(0)0+1=0

Step 3: Final Answer:
limx02x2+3xx+1=0


Example 83
Problem:
Find limx1x2+2x+1x+1.

Answer:
Step 1: Given Data:
f(x)=x2+2x+1x+1

Step 2: Solution:
Factor the numerator:
(x+1)(x+1)x+1

Cancel the common factor:
x+1

Substitute x=1 into the simplified expression:
f(1)=1+1=0

Step 3: Final Answer:
limx1x2+2x+1x+1=0


Example 84
Problem:
Find limx2x38x24.

Answer:
Step 1: Given Data:
f(x)=x38x24

Step 2: Solution:
Factor both the numerator and denominator:
(x2)(x2+2x+4)(x2)(x+2)

Cancel the common factor:
x2+2x+4x+2

Substitute x=2 into the simplified expression:
f(2)=(2)2+2(2)+42+2=4+4+44=3

Step 3: Final Answer:
limx2x38x24=3


Example 85
Problem:
Find limx2x3+8x24.

Answer:
Step 1: Given Data:
f(x)=x3+8x24

Step 2: Solution:
Factor both the numerator and denominator:
(x+2)(x22x+4)(x+2)(x2)

Cancel the common factor:
x22x+4x2

Substitute x=2 into the simplified expression:
f(2)=(2)22(2)+422=4+4+44=3

Step 3: Final Answer:
limx2x3+8x24=3


Example 86
Problem:
Find limx04x2+5xx2+1.

Answer:
Step 1: Given Data:
f(x)=4x2+5xx2+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=4(0)2+5(0)02+1=01=0

Step 3: Final Answer:
limx04x2+5xx2+1=0


Example 87
Problem:
Find limx1x31x1.

Answer:
Step 1: Given Data:
f(x)=x31x1

Step 2: Solution:
Factor the numerator:
(x1)(x2+x+1)x1

Cancel the common factor:
x2+x+1

Substitute x=1 into the simplified expression:
f(1)=(1)2+1+1=3

Step 3: Final Answer:
limx1x31x1=3


Example 88
Problem:
Find limx2x38x2.

Answer:
Step 1: Given Data:
f(x)=x38x2

Step 2: Solution:
Factor the numerator:
(x2)(x2+2x+4)x2

Cancel the common factor:
x2+2x+4

Substitute x=2 into the simplified expression:
f(2)=22+2(2)+4=12

Step 3: Final Answer:
limx2x38x2=12


Example 89
Problem:
Find limx3x29x3.

Answer:
Step 1: Given Data:
f(x)=x29x3

Step 2: Solution:
Factor the numerator:
(x3)(x+3)x3

Cancel the common factor:
x+3

Substitute x=3 into the simplified expression:
f(3)=3+3=6

Step 3: Final Answer:
limx3x29x3=6


Example 90
Problem:
Find limx1x3+1x+1.

Answer:
Step 1: Given Data:
f(x)=x3+1x+1

Step 2: Solution:
Factor the numerator:
(x+1)(x2x+1)x+1

Cancel the common factor:
x2x+1

Substitute x=1 into the simplified expression:
f(1)=(1)2(1)+1=1+1+1=3

Step 3: Final Answer:
limx1x3+1x+1=3


Example 91
Problem:
Find limx12x2xx1.

Answer:
Step 1: Given Data:
f(x)=2x2xx1

Step 2: Solution:
Substitute x=1 into the function:
f(1)=2(1)2(1)11=210

Step 3: Final Answer:
Since dividing by zero is undefined, limx12x2xx1 does not exist.


Example 92
Problem:
Find limx0x3x+1.

Answer:
Step 1: Given Data:
f(x)=x3x+1

Step 2: Solution:
Substitute x=0 into the function:
f(0)=030+1=0

Step 3: Final Answer:
limx0x3x+1=0


Example 93
Problem:
Find limx2x38x2.

Answer:
Step 1: Given Data:
f(x)=x38x2

Step 2: Solution:
Factor the numerator:
(x2)(x2+2x+4)x2

Cancel the common factor:
x2+2x+4

Substitute x=2 into the simplified expression:
f(2)=22+2(2)+4=12

Step 3: Final Answer:
limx2x38x2=12


Example 94
Problem:
Find limx1x21x1.

Answer:
Step 1: Given Data:
f(x)=x21x1

Step 2: Solution:
Factor the numerator:
(x1)(x+1)x1

Cancel the common factor:
x+1

Substitute x=1 into the simplified expression:
f(1)=1+1=2

Step 3: Final Answer:
limx1x21x1=2


Example 95
Problem:
Find limx1x3+1x+1.

Answer:
Step 1: Given Data:
f(x)=x3+1x+1

Step 2: Solution:
Factor the numerator:
(x+1)(x2x+1)x+1

Cancel the common factor:
x2x+1

Substitute x=1 into the simplified expression:
f(1)=(1)2(1)+1=3

Step 3: Final Answer:
limx1x3+1x+1=3


Example 96
Problem:
Find limx2x38x24.

Answer:
Step 1: Given Data:
f(x)=x38x24

Step 2: Solution:
Factor both the numerator and denominator:
(x2)(x2+2x+4)(x2)(x+2)

Cancel the common factor:
x2+2x+4x+2

Substitute x=2 into the simplified expression:
f(2)=4+4+42+2=3

Step 3: Final Answer:
limx2x38x24=3


Example 97
Problem:
Find limx02x3+3x2x+2.

Answer:
Step 1: Given Data:
f(x)=2x3+3x2x+2

Step 2: Solution:
Substitute x=0 into the function:
f(0)=2(0)3+3(0)20+2=0

Step 3: Final Answer:
limx02x3+3x2x+2=0


Example 98
Problem:
Find limx2x3+8x2.

Answer:
Step 1: Given Data:
f(x)=x3+8x2

Step 2: Solution:
Substitute x=2 into the function:
f(2)=(2)3+822=8+84=04=0

Step 3: Final Answer:
limx2x3+8x2=0


Example 99
Problem:
Find limx2x24x24x.

Answer:
Step 1: Given Data:
f(x)=x24x24x

Step 2: Solution:
Factor both the numerator and denominator:
(x2)(x+2)x(x2)

Cancel the common factor:
x+2x

Substitute x=2 into the simplified expression:
f(2)=2+22=42=2

Step 3: Final Answer:
limx2x24x24x=2


Example 100
Problem:
Find limx1x2+1x+1.

Answer:
Step 1: Given Data:
f(x)=x2+1x+1

Step 2: Solution:
Substitute x=1 into the function:
f(1)=(1)2+11+1=1+10

Step 3: Final Answer:
Since dividing by zero is undefined, limx1x2+1x+1 does not exist.

adbhutah
adbhutah

adbhutah.com

Articles: 1323