Given Data :
Sample mean $(x\bar)=13$
Population standard deviation $(\sigma) = 2$
Sample size $(n) = 20$
Confidence interval level $(CI) =95%$
The level of significance:
$$\alpha=1-0.95=0.05$$
The critical value:
$$z_c=Z_\frac\alpha2=Z_\frac{0.05}2=1.96$$
The confidence interval:
$$CI = \overline{x} \pm z_c \cdot \frac{\sigma}{\sqrt{n}} = 13 \pm 1.96 \cdot \frac{2}{\sqrt{20}} = (12.118, 13.882)$$