Answer:
Given:
Sample Mean $ (x\bar)=13 $
Population Standard Deviation $ (\sigma)=2 $
Sample Size $ (n) = 20 $
Confidence Interval Level $(CI) = 95% $
Solution:
The level of significance $(\alpha):$
$ \alpha = 1- 0.95 = 0.05 $
The critical value $ (Z_c): $
$ Z_c = Z_{\alpha/2} = Z_{0.05/2} = 1.96 $
The confidence interval $(CI): $
$\text{CI} = \bar{x} \pm Z_c \cdot \frac{\sigma}{\sqrt{n}} $
$ = 13 \pm 1.96 \cdot \frac{2}{\sqrt{20}} $
$ = (12.118, 13.882) $
Final Answer:
The 95% confidence interval $ = (12.118,13.882) $