Answer:
Given:
Sample mean $(\bar{x}) = 6.5$
Population standard deviation $(\sigma) = 0.8$
Sample size $(n) = 30$
Confidence interval level $= 90\%$
Solution:
The significance level $(\alpha):$
$\therefore (\alpha) = 1 – 0.90 = 0.10$
The critical value $(z_c):$
The critical value at 0.10 significance level $= 1.645$
The confidence interval:
$CI = \bar{x} \pm z_c \cdot \frac{\sigma}{\sqrt{n}} = 6.5 \pm 1.645 \cdot \frac{0.8}{\sqrt{30}} = (6.258, 6.742) \approx (6.26, 6.74)$
Final answer:
The 90\% confidence interval $= (6.26, 6.74)$