Answer:
Given:
Sample mean $(\bar{x}) = 5.4$
Population standard deviation $(\sigma) = 1.2$
Sample size $(n) = 60$
Confidence interval level $= 99\%$
Solution:
The significance level $(\alpha):$
$\therefore (\alpha) = 1 – 0.99 = 0.01$
The critical value $(z_c):$
The critical value at 0.01 significance level $= 2.58$
The confidence interval:
$CI = \bar{x} \pm z_c \cdot \frac{\sigma}{\sqrt{n}} = 5.4 \pm 2.58 \cdot \frac{1.2}{\sqrt{60}} = (5.013, 5.787) \approx (5.01, 5.79)$
Final answer:
The 99\% confidence interval $= (5.01, 5.79)$